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Abstract
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1 Introduction

The statistical imprecision of quarterly gross domestic product (GDP) estimates, along with the

fact that the first estimate is available with a delay of nearly a month, pose a significant challenge

to policy makers, market participants, and other observers with an interest in monitoring the state

of the economy in real time; see, e.g., Ghysels, Horan, and Moench (2018) for a recent discussion

of macroeconomic data revisions and publication delays. A term originated in meteorology, now-

casting pertains to the prediction of the present and very near future. Nowcasting is intrinsically a

mixed frequency data problem as the object of interest is a low-frequency data series (e.g., quarterly

GDP), whereas the real-time information (e.g., daily, weekly, or monthly) can be used to update

the state, or to put it differently, to nowcast the low-frequency series of interest. Traditional meth-

ods used for nowcasting rely on dynamic factor models that treat the underlying low frequency

series of interest as a latent process with high frequency data noisy observations. These models

are naturally cast in a state-space form and inference can be performed using likelihood-based

methods and Kalman filtering techniques; see Bańbura, Giannone, Modugno, and Reichlin (2013)

for a survey.

So far, nowcasting has mostly relied on the so-called standard macroeconomic data releases, one

of the most prominent examples being the Employment Situation report released on the first Friday

of every month by the US Bureau of Labor Statistics. This report includes the data on the nonfarm

payroll employment, average hourly earnings, and other summary statistics of the labor market

activity. Since most sectors of the economy move together over the business cycle, good news for

the labor market is usually good news for the aggregate economy. In addition to the labor market

data, the nowcasting models typically also rely on construction spending, (non-)manufacturing

report, retail trade, price indices, etc., which we will call the traditional macroeconomic data.

One prominent example of nowcast is produced by the Federal Reserve Bank of New York relying

on a dynamic factor model with thirty-six predictors of different frequencies; see Bok, Caratelli,

Giannone, Sbordone, and Tambalotti (2018) for more details.

Thirty-six predictors of traditional macroeconomic series may be viewed as a small number

compared to hundreds of other potentially available and useful nontraditional series. For instance,

macroeconomists increasingly rely on nonstandard data such as textual analysis via machine learn-

ing, which means potentially hundreds of series. A textual analysis data set based on Wall Street
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Journal articles that has been recently made available features a taxonomy of 180 topics; see By-

bee, Kelly, Manela, and Xiu (2020). Which topics are relevant? How should they be selected?

Thorsrud (2020) constructs a daily business cycle index based on quarterly GDP growth and tex-

tual information contained in the daily business newspapers relying on a dynamic factor model

where time-varying sparsity is enforced upon the factor loadings using a latent threshold mech-

anism. His work shows the feasibility of traditional state space setting, yet the challenges grow

when we also start thinking about adding other potentially high-dimensional data sets, such as

payment systems information or GPS tracking data. Studies for Canada (Galbraith and Tkacz

(2018)), Denmark (Carlsen and Storgaard (2010)), India (Raju and Balakrishnan (2019)), Italy

(Aprigliano, Ardizzi, and Monteforte (2019)), Norway (Aastveit, Fastbø, Granziera, Paulsen, and

Torstensen (2020)), Portugal (Duarte, Rodrigues, and Rua (2017)), and the United States (Barnett,

Chauvet, Leiva-Leon, and Su (2016)) find that payment transactions can help to nowcast and to

forecast GDP and private consumption in the short term; see also Moriwaki (2019) for nowcasting

unemployment rates with smartphone GPS data, among others. We could quickly reach numerical

complexities involved with estimating high-dimensional state space models, making the dynamic

factor model approach potentially computationally prohibitively complex and slow, although some

alternatives to the Kalman filter exist for the large data environments; see e.g., Chan and Jeliazkov

(2009) and Delle Monache and Petrella (2019). In this paper, we study nowcasting a low-frequency

series – focusing on the key example of US GDP growth – in a data-rich environment, where our

data not only includes conventional high-frequency series but also nonstandard data generated by

textual analysis of financial press articles. Several novel contributions are required to achieve our

goal. The contributions of our paper are both theoretical and practical. Regarding the former: (a)

we propose a new structured approach to high-dimensional regularized time regression problems,

(b) we establish a complete estimation and prediction theory for high-dimensional time series re-

gressions under assumptions comparable to the classical GMM and QML estimators, and (c) we

establish nonasymptotic and asymptotic estimation and prediction properties of our regularized

time series regression approach. Regarding the practical contributions we document superior now-

casting performance with respect to the state-of-the-art state space model approach to nowcasting

implemented by the Federal Reserve Bank of New York. In the remainder of this Introduction we

devote a paragraph to each of these contributions, starting with the theoretical ones.

First, we argue that the high-dimensional mixed frequency time series regressions involve cer-
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tain data structures that once taken into account should improve the performance of unrestricted

estimators in small samples. These structures are represented by groups covering lagged dependent

variables and groups of lags for a single (high-frequency) covariate. To that end, we leverage on

the sparse-group LASSO (sg-LASSO) regularization that accommodates conveniently such struc-

tures; see Simon, Friedman, Hastie, and Tibshirani (2013). The attractive feature of the sg-LASSO

estimator is that it allows us to combine effectively the approximately sparse and dense signals;

see e.g., Carrasco and Rossi (2016) for a comprehensive treatment of high-dimensional dense time

series regressions as well as Mogliani and Simoni (2020) for a complementary to ours Bayesian view

of penalized MIDAS regressions.

Second, we recognize that the economic and financial time series data are persistent and often

heavy-tailed, while the bulk of the machine learning methods assumes i.i.d. data and/or exponential

tails for covariates and regression errors; see Belloni, Chernozhukov, Chetverikov, Hansen, and

Kato (2020) for a comprehensive review of high-dimensional econometrics with i.i.d. data. There

have been several recent attempts to expand the asymptotic theory to settings involving time

series dependent data, mostly for the LASSO estimator. For instance, Kock and Callot (2015)

and Uematsu and Tanaka (2019) establish oracle inequalities for regressions with i.i.d. errors with

sub-Gaussian tails; Wong, Li, and Tewari (2019) consider β-mixing series with exponential tails;

Wu and Wu (2016), Han and Tsay (2017), and Chernozhukov, Härdle, Huang, and Wang (2020)

establish oracle inequalities for causal Bernoulli shifts with independent innovations and polynomial

tails under the functional dependence measure of Wu (2005); see also Medeiros and Mendes (2016)

and Medeiros and Mendes (2017) for results on the adaptive LASSO based on the triplex tail

inequality for mixingales of Jiang (2009). Despite these efforts, there is no complete estimation and

prediction theory for high-dimensional time series regressions under the assumptions comparable

to the classical GMM and QML estimators. For instance, the best currently available results

are too restrictive for the MIDAS projection model, which is typically an example of a causal

Bernoulli shift with dependent innovations. Moreover, the mixing processes with polynomial tails

that are especially relevant for the financial and macroeconomic time series have not been properly

treated due to the fact that the sharp Fuk-Nagaev inequality was not available in the relevant

literature until recently. The Fuk-Nagaev inequality, see Fuk and Nagaev (1971), describes the

concentration of sums of random variables with a mixture of the sub-Gaussian and the polynomial

tails. It provides sharp estimates of tail probabilities unlike Markov’s bound in conjunction with
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the Marcinkiewicz-Zygmund or Rosenthal’s moment inequalities.

Third, our paper fills these gaps in the literature relying on the Fuk-Nagaev inequality for

τ -mixing processes of Babii, Ghysels, and Striaukas (2020) and establishes the nonasymptotic

and asymptotic estimation and prediction properties of the sg-LASSO projections under weak tail

conditions and potential misspecification. The class of τ -mixing processes is fairly rich covering

he α-mixing processes, causal linear processes with infinitely many lags of β-mixing processes,

and nonlinear Markov processes; see Dedecker and Prieur (2004, 2005) for more details, as well as

Carrasco and Chen (2002) and Francq and Zakoian (2019) for mixing properties of various processes

encountered in time series econometrics. We show that the sparse-group LASSO estimator works

when the data have fat tails. In particular our weak tail conditions require at least 4 + ε finite

moments for covariates, while the number of finite moments for the error process can be as low as

2 + ν, provided that covariates have sufficiently light tails. From the theoretical point of view, we

impose approximate sparsity, relaxing the assumption of exact sparsity of the projection coefficients

and allowing for other forms of misspecification (see Giannone, Lenza, and Primiceri (2018) for

further discussion on the topic of sparsity). Lastly, we cover the LASSO and the group LASSO as

special cases.

We find that our nowcasts are either superior to or at par with those posted by the Federal Re-

serve Bank of New York (henceforth NY Fed). This is the case when (a) we compare our approach

with the NY Fed using the same data, or (b) when we compare our approach using an expanded

high-dimensional data set. The former is a comparison of methods, whereas the latter pertains to

the value of the additional (nonstandard) big data. To deal with such massive nontraditional data

sets, instead of using the likelihood-based dynamic factor models, we rely on a different approach

that involves machine learning methods based on the regularized empirical risk minimization prin-

ciple and data sampled at different frequencies. We adopt the MIDAS (Mixed Data Sampling)

projection approach which is more amenable to high-dimensional data environments. Our general

framework also includes the standard same frequency time series regressions.

The rest of the paper is organized as follows. Section 2 presents the setting of (potentially

mixed frequency) high-dimensional time series regressions. Section 3 characterizes nonasymptotic

estimation and prediction accuracy of the sg-LASSO estimator for τ -mixing processes with polyno-

mial tails. We report on a Monte Carlo study in Section 4 which provides further insights regarding
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the validity of our theoretical analysis in small sample settings typically encountered in empirical

applications. Section 5 covers the empirical application. Conclusions appear in Section 6.

Notation: For a random variable X ∈ R, let ‖X‖q = (E|X|q)1/q be its Lq norm with q ≥ 1. For

p ∈ N, put [p] = {1, 2, . . . , p}. For a vector ∆ ∈ Rp and a subset J ⊂ [p], let ∆J be a vector in

Rp with the same coordinates as ∆ on J and zero coordinates on J c. Let G be a partition of [p]

defining the group structure, which is assumed to be known to the econometrician. For a vector

β ∈ Rp, the sparse-group structure is described by a pair (S0,G0), where S0 = {j ∈ [p] : βj 6= 0}

and G0 = {G ∈ G : βG 6= 0} are the support and respectively the group support of β. We also

use |S| to denote the cardinality of arbitrary set S. For b ∈ Rp, its `q norm is denoted as

|b|q =
(∑

j∈[p] |bj|q
)1/q

for q ∈ [1,∞) and |b|∞ = maxj∈[p] |bj| for q = ∞. For u,v ∈ RT , the

empirical inner product is defined as 〈u,v〉T = T−1
∑T

t=1 utvt with the induced empirical norm

‖.‖2T = 〈., .〉T = |.|22/T . For a symmetric p×p matrix A, let vech(A) ∈ Rp(p+1)/2 be its vectorization

consisting of the lower triangular and the diagonal elements. For a, b ∈ R, we put a∨b = max{a, b}

and a∧b = min{a, b}. Lastly, we write an . bn if there exists a (sufficiently large) absolute constant

C such that an ≤ Cbn for all n ≥ 1 and an ∼ bn if an . bn and bn . an.

2 High-dimensional mixed frequency regressions

Let {yt : t ∈ [T ]} be the target low frequency series observed at integer time points t ∈ [T ].

Predictions of yt can involve its lags as well as a large set of covariates and lags thereof. In

the interest of generality, but more importantly because of the empirical relevance we allow the

covariates to be sampled at higher frequencies - with same frequency being a special case. More

specifically, let there be K covariates {xt−(j−1)/m,k, j ∈ [m], t ∈ [T ], k ∈ [K]} possibly measured at

some higher frequency with m ≥ 1 observations for every t and consider the following regression

model

φ(L)yt = ρ0 +
K∑
k=1

ψ(L1/m; βk)xt,k + ut, t ∈ [T ],

where φ(L) = I − ρ1L− ρ2L2−· · ·− ρJLJ is a low-frequency lag polynomial and ψ(L1/m; βk)xt,k =

1/m
∑m

j=1 βj,kxt−(j−1)/m,k is a high-frequency lag polynomial. For m = 1, we have a standard

autoregressive distributed lag (ARDL) model, which is the workhorse regression model of the

time series econometrics literature. Note that the polynomial ψ(L1/m; βk)xt,k involves the same m
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number of high-frequency lags for each covariate k ∈ [K], which is done for the sake of simplicity

and can easily be relaxed; see Section 5.

The ARDL-MIDAS model (using the terminology of Andreou, Ghysels, and Kourtellos (2013))

features J+1+m×K parameters. In the big data setting with a large number of covariates sampled

at high-frequency, the total number of parameters may be large compared to the effective sample

size or even exceed it. This leads to poor estimation and out-of-sample prediction accuracy in

finite samples. For instance, with m = 3 (quarterly/monthly setting) and 35 covariates at 4 lagged

quarters, we need to estimate m × K = 420 parameters. At the same time, say the post-WWII

quarterly GDP growth series has less than 300 observations.

The LASSO estimator, see Tibshirani (1996), offers an appealing convex relaxation of a difficult

nonconvex best subset selection problem. It allows increasing the precision of predictions via the

selection of sparse and parsimonious models. In this paper, we focus on the structured sparsity with

additional dimensionality reductions that aim to improve upon the unstructured LASSO estimator

in the time series setting.

First, we parameterize the high-frequency lag polynomial following the MIDAS regression or

the distributed lag econometric literature (see Ghysels, Santa-Clara, and Valkanov (2006)) as

ψ(L1/m; βk)xt,k =
1

m

m∑
j=1

ω((j − 1)/m; βk)xt−(j−1)/m,k,

where βk is L-dimensional vector of coefficients with L ≤ m and ω : [0, 1]×RL → R is some weight

function. Second, we approximate the weight function as

ω(u; βk) ≈
L∑
l=1

βk,lwl(u), u ∈ [0, 1], (1)

where {wl : l = 1, . . . , L} is a collection of functions, called the dictionary. The simplest example

of the dictionary consists of algebraic power polynomials, also known as Almon (1965) polyno-

mials in the time series regression analysis literature. More generally, the dictionary may consist

of arbitrary approximating functions, including the classical orthogonal bases of L2[0, 1]; see On-

line Appendix Section A.1 for more examples. Using orthogonal polynomials typically reduces

the multicollinearity and leads to better finite sample performance. It is worth mentioning that

the specification with dictionaries deviates from the standard MIDAS regressions and leads to a

computationally attractive convex optimization problem, cf. Marsilli (2014).

6



The size of the dictionary L and the number of covariates K can still be large and the approxi-

mate sparsity is a key assumption imposed throughout the paper. With the approximate sparsity,

we recognize that assuming that most of the estimated coefficients are zero is overly restrictive and

that the approximation error should be taken into account. For instance, the weight function may

have an infinite series expansion, nonetheless, most can be captured by a relatively small number

of orthogonal basis functions. Similarly, there can be a large number of economically relevant

predictors, nonetheless, it might be sufficient to select only a smaller number of the most relevant

ones to achieve good out-of-sample forecasting performance. Both model selection goals can be

achieved with the LASSO estimator. However, the LASSO does not recognize that covariates at

different (high-frequency) lags are temporally related.

In the baseline model, all high-frequency lags (or approximating functions once we parameterize

the lag polynomial) of a single covariate constitute a group. We can also assemble all lag depen-

dent variables into a group. Other group structures could be considered, for instance combining

various covariates into a single group, but we will work with the simplest group setting of the

aforementioned baseline model. The sparse-group LASSO (sg-LASSO) allows us to incorporate

such structure into the estimation procedure. In contrast to the group LASSO, see Yuan and Lin

(2006), the sg-LASSO promotes sparsity between and within groups, and allows us to capture the

predictive information from each group, such as approximating functions from the dictionary or

specific covariates from each group.

To describe the estimation procedure, let y = (y1, . . . , yT )>, be a vector of dependent variable

and let X = (ι,y1, . . . ,yJ , Z1W, . . . , ZKW ), be a design matrix, where ι = (1, 1, . . . , 1)> is a vector

of ones, yj = (y1−j, . . . , yT−j)
>, Zk = (xk,t−(j−1)/m)t∈[T ],j∈[m] is a T × m matrix of the covariate

k ∈ [K], and W = (wl ((j − 1)/m) /m)j∈[m],l∈[L] is an m× L matrix of weights. In addition, put β

= (β>0 , β
>
1 , . . . , β

>
K)>, where β0 = (ρ0, ρ1, . . . , ρJ)> is a vector of parameters pertaining to the group

consisting of the intercept and the autoregressive coefficients, and βk ∈ RL denotes parameters

of the high-frequency lag polynomial pertaining to the covariate k ≥ 1. Then, the sparse-group

LASSO estimator, denoted β̂, solves the penalized least-squares problem

min
b∈Rp
‖y −Xb‖2T + 2λΩ(b) (2)

with a penalty function that interpolates between the `1 LASSO penalty and the group LASSO
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(a) LASSO, α = 1 (b) group LASSO with 1 group, α = 0

(c) sg-LASSO with 1 group, α = 0.5 (d) sg-LASSO with 2 groups, α = 0.5

Figure 1: The figure shows the geometry of the constrained set, {b ∈ R2 : Ω(b) ≤ 1}, corresponding

to the sparse-group LASSO penalty function for several groupings and values of α.

penalty

Ω(b) = α|b|1 + (1− α)‖b‖2,1,

where ‖b‖2,1 =
∑

G∈G |bG|2 is the group LASSO norm and G is a group structure (partition of [p])

specified by the econometrician. Note that estimator in equation (2) is defined as a solution to the

convex optimization problem and can be computed efficiently, e.g., using an appropriate coordinate

descent algorithm; see Simon, Friedman, Hastie, and Tibshirani (2013).

The amount of penalization in equation (2) is controlled by the regularization parameter λ > 0

while α ∈ [0, 1] is a weight parameter that determines the relative importance of the sparsity and

the group structure. Setting α = 1, we obtain the LASSO estimator while setting α = 0, leads

to the group LASSO estimator, which is reminiscent of the elastic net. In Figure 1 we illustrate

the geometry of the penalty function for different groupings and different values of α covering (a)

LASSO with α = 1, (b) group LASSO with one group, α = 0, and two sg-LASSO cases (c) one

group and (d) two groups both with α = 0.5. In practice, groups are defined by a particular

8



problem and are specified by the econometrician, while α can be fixed or selected jointly with λ in

a data-driven way such as using the cross-validation.

3 High-dimensional time series regressions

3.1 High-dimensional regressions and τ-mixing

We focus on a generic high-dimensional linear projection model with a countable number of regres-

sors

yt =
∞∑
j=0

xt,jβj + ut, E[utxt,j] = 0, ∀j ≥ 1, t ∈ Z, (3)

where xt,0 = 1 and mt ,
∑∞

j=0 xt,jβj is a well-defined random variable. In particular, to ensure

that yt is a well-defined economic quantity, we need βj ↓ 0 sufficiently fast, which is a form of the

approximate sparsity condition, see Belloni, Chernozhukov, Chetverikov, Hansen, and Kato (2020).

This setting nests the high-dimensional ARDL-MIDAS projections described in the previous section

and more generally may allow for other high-dimensional time series models. In practice, given

a (large) number of covariates, lags thereof, as well as lags of the dependent variable, denoted

xt ∈ Rp, we would approximate mt with x>t β ,
∑p

j=0 xt,jβj, where p < ∞ and the regression

coefficient β ∈ Rp could be sparse. Importantly, our settings allows for the approximate sparsity

as well as other forms of misspecification and the main result of the following section allows for

mt 6= x>t β.

Using the setting of equation (2), for a sample (yt, xt)
T
t=1, write

y = m + u,

where y = (y1, . . . , yT )>, m = (m1, . . . ,mT )>, and u = (u1, . . . , uT )>. The approximation to m is

denoted Xβ, where X = (x1, . . . , xT )> is a T × p matrix of covariates and β = (β1, . . . , βp)
> is a

vector of unknown regression coefficients.

We measure the time series dependence with τ -mixing coefficients. For a σ-algebra M and a

random vector ξ ∈ Rl, put

τ(M, ξ) =

∥∥∥∥ sup
f∈Lip1

|E(f(ξ)|M)− E(f(ξ))|
∥∥∥∥
1

,
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where Lip1 =
{
f : Rl → R : |f(x)− f(y)| ≤ |x− y|1

}
is a set of 1-Lipschitz functions. Let (ξt)t∈Z

be a stochastic process and let Mt = σ(ξt, ξt−1, . . . ) be its canonical filtration. The τ -mixing

coefficient of (ξt)t∈Z is defined as

τk = sup
j≥1

1

j
sup

t+k≤t1<···<tj
τ(Mt, (ξt1 , . . . , ξtj)), k ≥ 0.

If τk ↓ 0 as k → ∞, then the process (ξt)t∈Z is called τ -mixing. The τ -mixing coefficients were

introduced in Dedecker and Prieur (2004) as dependence measures weaker than mixing. Note that

the commonly used α- and β-mixing conditions are too restrictive for the linear projection model

with an ARDL-MIDAS process. Indeed, a causal linear process with dependent innovations is

not necessary α-mixing; see also Andrews (1984) for an example of AR(1) process which is not

α-mixing. Roughly speaking, τ -mixing processes are somewhere between mixingales and α-mixing

processes and can accommodate such counterexamples. At the same time, sharp Fuk-Nagaev

inequalities are available for τ -mixing processes which to the best of our knowledge is not the case

for the mixingales or near-epoch dependent processes; see Babii, Ghysels, and Striaukas (2020).

Dedecker and Prieur (2004, 2005) discuss how to verify the τ -mixing property for causal

Bernoulli shifts with dependent innovations and nonlinear Markov processes. It is also worth

comparing the τ -mixing coefficient to other weak dependence coefficients. Suppose that (ξt)t∈Z is

a real-valued stationary process and let γk = ‖E(ξk|M0)− E(ξk)‖1 be its L1 mixingale coefficient.

Then we clearly have γk ≤ τk and it is known that

|Cov(ξ0, ξk)| ≤
∫ γk

0

Q ◦G(u)du ≤
∫ τk

0

Q ◦G(u)du ≤ τ
q−2
q−1

k ‖ξ0‖q/(q−1)q ,

where Q is the generalized inverse of x 7→ Pr(|ξ0| > x) and G is the generalized inverse of x 7→∫ x
0
Q(u)du; see Babii, Ghysels, and Striaukas (2020), Lemma A.1.1. Therefore, the τ -mixing

coefficient provides a sharp control of autocovariances similarly to the L1 mixingale coefficients,

which in turn can be used to ensure that the long-run variance of (ξt)t∈Z exists. The τ -mixing

coefficient is also bounded by the α-mixing coefficient, denoted αk, as follows

τk ≤ 2

∫ 2αk

0

Q(u)du ≤ 2‖ξ0‖q(2αk)1/r,

where the first inequality follows by Dedecker and Prieur (2004), Lemma 7 and the second by

Hölder’s inequality with q, r ≥ 1 such that q−1 + r−1 = 1. It is worth mentioning that the mixing

properties for various time series models in econometrics, including GARCH, stochastic volatility,
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or autoregressive conditional duration are well-known; see, e.g., Carrasco and Chen (2002), Francq

and Zakoian (2019), Babii, Chen, and Ghysels (2019); see also Dedecker, Doukhan, Lang, Rafael,

Louhichi, and Prieur (2007) for more examples and a comprehensive comparison of various weak

dependence coefficients.

3.2 Estimation and prediction properties

In this section, we introduce the main assumptions for the high-dimensional time series regressions

and study the estimation and prediction properties of the sg-LASSO estimator covering the LASSO

and the group LASSO estimators as special cases. The following assumption imposes some mild

restrictions on the stochastic processes in the high-dimensional regression equation (3).

Assumption 3.1 (Data). For every j, k ∈ [p], the processes (utxt,j,)t∈Z and (xt,jxt,k)t∈Z are sta-

tionary such that (i) ‖u0‖q < ∞ and maxj∈[p] ‖x0,j‖r = O(1) for some constants q > 2r/(r − 2)

and r > 4; (ii) the τ -mixing coefficients are τk ≤ ck−a and respectively τ̃k ≤ ck−b for all k ≥ 0 and

some c > 0, a > (ς − 1)/(ς − 2), b > (r − 2)/(r − 4), and ς = qr/(q + r).

It is worth mentioning that the stationarity condition is not essential and can be relaxed to the

existence of the limiting variance of partial sums at costs of heavier notations and proofs. Condition

(i) requires that covariates have at least 4 finite moments, while the number of moments required

for the error process can be as low as 2 + ε, depending on the integrability of covariates. Therefore,

(i) may allow for heavy-tailed distributions commonly encountered in financial and economic time

series, e.g., asset returns and volatilities. Given the integrability in (i), (ii) requires that the τ -

mixing coefficients decrease to zero sufficiently fast; see Online Appendix, Section A.3 for moments

and τ -mixing coefficients of ARDL-MIDAS. It is known that the β-mixing coefficients decrease

geometrically fast, e.g., for geometrically ergodic Markov chains, in which case (ii) holds for every

a, b > 0. Therefore, (ii) allows for relatively persistent processes.

For the support S0 and the group support G0 of β, put

Ω0(b) , α|bS0 |1 + (1− α)
∑
G∈G0

|bG|2 and Ω1(b) , α|bSc
0
|1 + (1− α)

∑
G∈Gc0

|bG|2.

For some c0 > 0, define C(c0) , {∆ ∈ Rp : Ω1(∆) ≤ c0Ω0(∆)}. The following assumption gener-

alizes the restricted eigenvalue condition of Bickel, Ritov, and Tsybakov (2009) to the sg-LASSO

estimator and is imposed on the population covariance matrix Σ = E[X>X/T ].
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Assumption 3.2 (Restricted eigenvalue). There exists a universal constant γ > 0 such that

∆>Σ∆ ≥ γ
∑

G∈G0 |∆G|22 for all ∆ ∈ C(c0), where c0 = (c+ 1)/(c− 1) for some c > 1.

Recall that if Σ is a positive definite matrix, then for all ∆ ∈ Rp, we have ∆>Σ∆ ≥ γ|∆|22, where γ

is the smallest eigenvalue of Σ. Therefore, in this case Assumption 3.2 is trivially satisfied because

|∆|22 ≥
∑

G∈G0 |∆G|22. The positive definiteness of Σ is also known as a completeness condition

and Assumption 3.2 can be understood as its weak version; see Babii and Florens (2020) and

references therein. It is worth emphasizing that γ > 0 in Assumption 3.2 is a universal constant

independent of p, which is the case, e.g., when Σ is a Toeplitz matrix or a spiked identity matrix.

Alternatively, we could allow for γ ↓ 0 as p → ∞, in which case the term γ−1 would appear in

our nonasymptotic bounds slowing down the speed of convergence, and we may interpret γ as a

measure of ill-posedness in the spirit of econometrics literature on ill-posed inverse problems; see

Carrasco, Florens, and Renault (2007).

The value of the regularization parameter is determined by the Fuk-Nagaev concentration

inequality, appearing in the Online Appendix, see Theorem A.1.

Assumption 3.3 (Regularization). For some δ ∈ (0, 1)

λ ∼
( p

δT κ−1

)1/κ
∨
√

log(8p/δ)

T
,

where κ = ((a+ 1)ς − 1)/(a+ ς − 1) and a, ς are as in Assumption 3.1.

The regularization parameter in Assumption 3.3 is determined by the persistence of the data,

quantified by a, and the tails, quantified by ς = qr/(q + r). This dependence is reflected in the

dependence-tails exponent κ. The following result describes the nonasymptotic prediction and

estimation bounds for the sg-LASSO estimator, see Online Appendix, Section A.2 for the proof.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, and 3.3 are satisfied. Then with probability at

least 1− δ −O(p2(T 1−µsµα + exp(−cT/s2α)))

‖X(β̂ − β)‖2T . sαλ
2 + ‖m−Xβ‖2T

and

Ω(β̂ − β) . sαλ+ λ−1‖m−Xβ‖2T +
√
sα‖m−Xβ‖T

for some c > 0, where
√
sα = α

√
|S0|+ (1− α)

√
|G0| and µ = ((b+ 1)r − 2)/(r + 2(b− 1)).
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Theorem 3.1 provides nonasymptotic guarantees for the estimation and prediction with the sg-

LASSO estimator reflecting potential misspecification. In the special case of the LASSO estimator

(α = 1), we obtain the counterpart to the result of Belloni, Chen, Chernozhukov, and Hansen

(2012) for the LASSO estimator with i.i.d. data taking into account that we may have mt 6= x>t β.

At another extreme, when α = 0, we obtain the nonasymptotic bounds for the group LASSO

allowing for misspecification which to the best of our knowledge are new, cf. Negahban, Ravikumar,

Wainwright, and Yu (2012) and van de Geer (2016). We call sα the effective sparsity constant.

This constant reflects the benefits of the sparse-group structure for the sg-LASSO estimator that

can not be deduced from the results currently available for the LASSO or the group LASSO.

Remark 3.1. Since the `1-norm is equivalent to the Ω-norm whenever groups have fixed size, we

deduce from Theorem 3.1 that

|β̂ − β|1 . sαλ+ λ−1‖m−Xβ‖2T +
√
sα‖m−Xβ‖T .

Next, we consider the asymptotic regime, in which the misspecification error vanishes when the

sample size increases as described in the following assumption.

Assumption 3.4. (i) ‖m−Xβ‖2T = OP (sαλ
2); and (ii) p2T 1−µsµα → 0 and p2 exp(−cT/s2α)→ 0.

The following corollary is an immediate consequence of Theorem 3.1.

Corollary 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, and 3.4 hold. Then

‖X(β̂ − β)‖2T = OP

(
sαp

2/κ

T 2−2/κ ∨
sα log p

T

)
and

|β̂ − β|1 = OP

(
sαp

1/κ

T 1−1/κ ∨ sα

√
log p

T

)
.

If the effective sparsity constant sα is fixed, then p = o(T κ−1) is a sufficient condition for the

prediction and estimation errors to vanish, whenever µ ≥ 2κ− 1. In this case Assumption 3.4 (ii)

is vacuous. More generally, sα is allowed to increase slowly with the sample size. Convergence

rates in Corollary 3.1 quantify the effect of tails and persistence of the data on the prediction and

estimation accuracies of the sg-LASSO estimator. In particular, lighter tails and less persistence

allow us to handle a larger number of covariates p compared to the sample size T . In particular p

can increase faster than T , provided that κ > 2.
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Remark 3.2. In the special case of the LASSO estimator with i.i.d. data, Corollary 4 of Fuk

and Nagaev (1971) leads to the convergence rate of order OP

(
p1/ς

T 1−1/ς ∨
√

log p
T

)
. If the τ -mixing

coefficients decrease geometrically fast (e.g., stationary AR(p)), then κ ≈ ς for a sufficiently large

value of the dependence exponent a, in which case the convergence rates in Corollary 3.1 are close

to the i.i.d. case. In this sense these rates depend sharply on the tails exponent ς, and we can

conclude that for geometrically decreasing τ -mixing coefficients, the persistence of the data should

not affect the convergence rates of the LASSO.

Remark 3.3. In the special case of the LASSO estimator, if (ut)t∈Z and (xt)t∈Z are causal Bernoulli

shifts with independent innovations and at least q = r ≥ 8 finite moments, one can deduce from

Chernozhukov, Härdle, Huang, and Wang (2020), Lemma 5.1 and Corollary 5.1, the convergence

rate of order OP

(
(pωT )1/ς

T 1−1/ς ∨
√

log p
T

)
, where ωT = 1 (weakly dependent case) or ωT = T ς/2−1−aς ↑ ∞

(strongly dependent case), provided that the physical dependence coefficients are of size O(k−a).

Note that for causal Bernoulli shifts with independent innovations, the physical dependence coeffi-

cients are not directly comparable to τ -mixing coefficients; see Dedecker, Doukhan, Lang, Rafael,

Louhichi, and Prieur (2007), Remark 3.1 on p.32.

4 Monte Carlo experiments

We assess via simulations the out-of-sample predictive performance (forecasting and nowcasting),

and the MIDAS weights recovery of the sg-LASSO with dictionaries. We benchmark the perfor-

mance of our novel sg-LASSO setup against two alternatives: (a) unstructured, meaning standard,

LASSO with MIDAS, and (b) unstructured LASSO with the unrestricted lag polynomial. The

former allows us to assess the benefits of exploiting group structures, whereas the latter focuses on

the advantages of using dictionaries in a high-dimensional setting.

4.1 Simulation Design

To assess the predictive performance and the MIDAS weight recovery, we simulate the data from

the following DGP:

yt = ρ1yt−1 + ρ2yt−2 +
K∑
k=1

1

m

m∑
j=1

ω((j − 1)/m; βk)xt−(j−1)/m,k + ut,
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where ut ∼i.i.d. N(0, σ2
u) and the DGP for covariates {xk,t−(j−1)/m : j ∈ [m], k ∈ [K]} is specified

below. This corresponds to a target of interest yt driven by two autoregressive lags augmented

with high frequency series, hence, the DGP is an ARDL-MIDAS model. We set σ2
u = 1, ρ1 = 0.3,

ρ2 = 0.01, and take the number of relevant high frequency regressors K = 3. In some scenarios we

also decrease the signal-to-noise ratio by setting σ2
u = 5. We are interested in quarterly/monthly

data, and use four quarters of data for the high frequency regressors so that m = 12. We rely

on a commonly used weighting scheme in the MIDAS literature, namely ω(s; βk) for k = 1, 2 and

3 are determined by beta densities respectively equal to Beta(1, 3),Beta(2, 3), and Beta(2, 2); see

Ghysels, Sinko, and Valkanov (2007) or Ghysels and Qian (2019), for further details.

The high frequency regressors are generated as either one of the following:

1. K i.i.d. realizations of the univariate autoregressive (AR) process xh = ρxh−1 + εh, where

ρ = 0.2 or ρ = 0.7 and either εh ∼i.i.d. N(0, σ2
ε), σ

2
ε = 1, or εh ∼i.i.d. student-t(5), where h

denotes the high-frequency sampling.

2. Multivariate vector autoregressive (VAR) process Xh = ΦXh−1 + εh, where εh ∼i.i.d. N(0, IK)

and Φ is a block diagonal matrix described below.

For the AR simulation design, we initiate the processes as x0 ∼ N (0, σ2/(1− ρ2)) and y0 ∼

N (0, σ2(1− ρ2)/((1 + ρ2)((1− ρ2)2 − ρ21))) . For the VAR, the initial value of (yt) is the same, while

X0 ∼ N(0, IK). In all cases, the first 200 observations are treated as burn-in. In the estimation

procedure, we add 7 noisy covariates which are generated in the same way as the relevant covariates

and use 5 low-frequency lags. The empirical models use a dictionary which consists of Legendre

polynomials up to degree L = 10 shifted to the [0, 1] interval with the MIDAS weight function

approximated as in equation (1). The sample size is T ∈ {50, 100, 200}, and for all the experiments

we use 5000 simulation replications.

We assess the performance of different methods by modifying the assumptions on the error terms

of the high-frequency process εh, considering multivariate high-frequency processes, changing the

degree of Legendre polynomials L, increasing the noise level of the low-frequency process σ2
u, using

only half of the high-frequency lags in predictive regressions, and adding a larger number of noisy

covariates. In the case of VAR high-frequency process, we set Φ to be block-diagonal with the first

5× 5 block having entries 0.15 and the remaining 5× 5 block(s) having entries 0.075.
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We estimate three different LASSO-type regression models. In the first model, we keep the

weighting function unconstrained, and therefore we estimate 12 coefficients per high-frequency

covariate using the unstructured LASSO estimator. We denote this model LASSO-U-MIDAS

(inspired by the U-MIDAS of Foroni, Marcellino, and Schumacher (2015)). In the second model we

use MIDAS weights together with the unstructured LASSO estimator; we call this model LASSO-

MIDAS. In this case, we estimate L + 1 number of coefficients per high-frequency covariate. The

third model applies the sg-LASSO estimator together with MIDAS weights. Groups are defined

as in Section 2; each low-frequency lag and high-frequency covariate is a group, therefore, we have

K + 5 groups. We select the value of tuning parameters λ and α using the 5-fold cross-validation,

defining folds as adjacent blocks over the time dimension to take into account the time series

dependence. This model is denoted sg-LASSO-MIDAS.

For regressions with aggregated data, we consider: (a) Flow aggregation (FLOW): xAk,t =

1/m
∑m

j=1 xk,t−(j−1)/m, (b) Stock aggregation (STOCK): xAk,t = xk,t, and (c) Middle high-frequency

lag (MIDDLE): single middle value of the high-frequency lag with ties solved in favor of the most

recent observation (i.e., we take a single 6th lag if m = 12). In these cases, the models are estimated

using the OLS estimator, which is unfeasible when the number of covariates becomes equal to the

sample size and we leave results blank in this case.

4.2 Simulation results

Detailed results are reported in the Online Appendix. Tables A.1–A.2, cover the average mean

squared forecast errors for one-step-ahead forecasts and nowcasts. The sg-LASSO with MIDAS

weighting (sg-LASSO-MIDAS) outperforms all other methods in all simulation scenarios. Im-

portantly, both sg-LASSO-MIDAS and unstructured LASSO-MIDAS with nonlinear weight func-

tion approximations perform much better than all other methods when the sample size is small

(T = 50). In this case, sg-LASSO-MIDAS yields the largest improvements over alternatives, in

particular, with a large number of noisy covariates (bottom-right block). These findings are robust

to increases in the persistence parameter of covariates ρ from 0.2 to 0.7. The LASSO without

MIDAS weighting has typically large forecast errors. Comparing across simulation scenarios, all

methods seem to perform worse with heavy-tailed or persistent covariates. In these cases, however,

the impact on the sg-LASSO-MIDAS method is lesser compared to the other methods. This sim-
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ulation evidence supports our theoretical results and findings in the empirical application. Lastly,

forecasts using flow-aggregated covariates seem to perform better than other simple aggregation

methods in all simulation scenarios, but significantly worse than the sg-LASSO-MIDAS.

In Table A.3–A.4 we report additional results for the estimation accuracy of the weight func-

tions. In Figure A.1–A.3, we plot the estimated weight functions from several methods. The

results indicate that the LASSO without MIDAS weighting can not accurately recover the weights

in small samples and/or low signal-to-noise ratio scenarios. Using Legendre polynomials improves

the performance substantially and the sg-LASSO seems to improve even more over the unstructured

LASSO.

5 Nowcasting US GDP with macro, financial and textual

news data

We nowcast US GDP with macroeconomic, financial, and textual news data. Details regarding

the data sources appear in the Online Appendix Section A.5. Regarding the macro data, we rely

on 34 series used in the Federal Reserve Bank of New York nowcast model, discarding two series

(”PPI: Final demand” and ”Merchant wholesalers: Inventories”) due to very short samples; see

Bok, Caratelli, Giannone, Sbordone, and Tambalotti (2018) for more details regarding this data.

For all macro data, we use real-time vintages, which effectively means that we take all macro

series with a delay as well real-time data releases. For example, if we nowcast the first quarter of

GDP one month before the quarter ends, we use data up to the end of February, and therefore all

macro series with a delay of one month that enter the model are available up to the end of January.

As we use data real-time data releases, the January observation in this case is also the first release

of a particular series. We use Legendre polynomials of degree three for all macro covariates to

aggregate twelve lags of monthly macro data. In particular, let xt+(h+1−j)/m,k be kth covariate at

quarter t with m = 3 months per quarter and h = 2 − 1 = 1 months into the quarter (2 months

into the quarter minus 1 month due to publication delay), where j = 1, 2, . . . , 12 is the monthly

lag. We then collect all lags in a vector

Xt,k = (xt+1/3,k, xt+0/3,k, . . . , xt−10/3,k)
>

and aggregate Xt,k using a dictionary W consisting of Legendre polynomials, so that Xt,kW defines
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as a single group for the sg-LASSO estimator.

In addition to macro and financial data, we also use the textual analysis data. We take 76

news attention series from Bybee, Kelly, Manela, and Xiu (2020) and use Legendre polynomials

of degree two to aggregate three monthly lags of each news attention series. Note that the news

attention series are used without a publication delay, that is, for the one-month horizon, we take

the series up to the end of the second month. Moreover, the Bybee, Kelly, Manela, and Xiu (2020)

news topic models involve rolling samples, avoiding look ahead biases when used in our nowcasts.

We compute the predictions using a rolling window scheme. The first nowcast is for 2002

Q1, for which we use fifteen years (sixty quarters) of data, and the prediction is computed using

2002 January (2-month horizon) February (1-month), and March (end of the quarter) data. We

calculate predictions until the sample is exhausted, which is 2017 Q2, the last date for which news

attention data is available. As indicated above, we report results for the 2-month, 1-month, and the

end-of-quarter horizons. Our target variable is the first release, i.e., the advance estimate of real

GDP growth. For each quarter and nowcast horizon, we tune sg-LASSO-MIDAS regularization

parameters λ and α using 5-fold cross-validation, defining folds as adjacent blocks over the time

dimension to take into account the time series nature of the data. Finally, we follow the literature

on nowcasting real GDP and define our target variable to be the annualized growth rate.

Let xt,k be the k-th high-frequency covariate at time t. The general ARDL-MIDAS predictive

regression is

φ(L)yt+1 = µ+
K∑
k=1

ψ(L1/m; βk)xt,k + ut+1, t = 1, . . . , T,

where φ(L) is the low-frequency lag polynomial, µ is the regression intercept, and ψ(L1/m; βk)xtk, k =

1, . . . , K are lags of high-frequency covariates. Following Section 2, the high-frequency lag polyno-

mial is defined as

ψ(L1/m; βk)xt,k =
1

mqk

mqk∑
j=1

ω((j − 1)/mqk; βk)xt+(hk+1−j)/m,k,

where for kth covariate, hk indicates the number of leading months of available data in the quarter

t, qk is the number of quarters of covariate lags, and we approximate the weight function ω with

the Legendre polynomial. For example, if hk = 1 and qk = 4, then we have 1 month of data into a

quarter and use qkm = 12 monthly lags for a covariate k.
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We benchmark our predictions against the simple AR(1) model, which is considered to be a

reasonable starting point for short-term GDP growth predictions. We focus on predictions of our

method, sg-LASSO-MIDAS, with and without financial data combined with series based on the

textual analysis. One natural comparison is with the publicly available Federal Reserve Bank of

New York, denoted NY Fed, model implied nowcasts. We adopt the following strategy. First, we

Rel-RMSE DM-stat-1 DM-stat-2

2-month horizon

AR(1) 2.056 0.612 2.985

sg-LASSO-MIDAS 0.739 -2.481

NY Fed 0.946 2.481

1-month horizon

AR(1) 2.056 2.025 2.556

sg-LASSO-MIDAS 0.725 -0.818

NY Fed 0.805 0.818

End-of-quarter

AR(1) 2.056 2.992 3.000

sg-LASSO-MIDAS 0.701 -0.077

NY Fed 0.708 0.077

p-value of aSPA test

0.046

Table 1: Nowcast comparisons for models with macro data only – Nowcast horizons are 2- and 1-month ahead,

as well as the end of the quarter. Column Rel-RMSE reports root mean squared forecasts error relative to the

AR(1) model. Column DM-stat-1 reports Diebold and Mariano (1995) test statistic of all models relative to NY Fed

nowcasts, while column DM-stat-2 reports the Diebold Mariano test statistic relative to sg-LASSO-MIDAS model.

The last row reports the p-value of the average Superior Predictive Ability (aSPA) test, see Quaedvlieg (2019), over

the three horizons of sg-LASSO-MIDAS model compared to the NY Fed nowcasts. Out-of-sample period: 2002 Q1

to 2017 Q2.

focus on the same series that are used to calculate the NY Fed nowcasts. The purpose here is to

compare models since the data inputs are the same. This means that we compare the performance

of dynamic factor models (NY Fed) with that of machine learning regularized regression methods

(sg-LASSO-MIDAS). Next, we expand the data set to see whether additional financial and textual
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news series can improve the nowcast performance.

In Table 1, we report results based on real-time macro data used for the NY Fed model, see

Bok, Caratelli, Giannone, Sbordone, and Tambalotti (2018). The results show that the sg-LASSO-

MIDAS performs much better than the NY Fed nowcasts at the longer, i.e. 2-month, horizon. Our

method significantly beats the benchmark AR(1) model for all the horizons, and the accuracy of

the nowcasts improve with the horizon. Our end-of-quarter and 1-month horizon nowcasts are

similar to the NY Fed ones, with the sg-LASSO-MIDAS being slightly better numerically but not

statistically. We also report the average Superior Predictive Ability test of Quaedvlieg (2019) over

all three horizons and the result reveals that the improvement of the sg-LASSO-MIDAS model

versus the NY Fed nowcasts is significant at the 5% significance level. Lastly, we report results

that do not discard two series (“PPI: Final demand” and “Merchant wholesalers: Inventories”)

due to short samples in the Online Appendix Section A.5.1. The results are very similar and do

not change our conclusions.

The comparison in Table 1 does not fully exploit the potential of our methods, as it is easy

to expand the data series beyond the small number used by the NY Fed nowcasting model. In

Table 2 we report results with additional sets of covariates which are financial series, advocated by

Andreou, Ghysels, and Kourtellos (2013), and textual analysis of news. In total, the models select

from 118 series – 34 macro, 8 financial, and 76 news attention series. For the moment we focus

only on the first three columns of the table. At the longer horizon of 2 months, the method seems

to produce slightly worse nowcasts compared to the results reported in Table 1 using only macro

data. However, we find significant improvements in prediction quality for the shorter 1-month

and end-of-quarter horizons. In particular, a significant increase in accuracy relative to NY Fed

nowcasts appears at the 1-month horizon. We report again the average Superior Predictive Ability

test of Quaedvlieg (2019) over all three horizons with the same result that the improvement of

sg-LASSO-MIDAS versus the NY Fed nowcasts is significant at the 5% significance level. Lastly,

we report results for several alternatives, namely, PCA-OLS, ridge, LASSO, and Elastic Net, using

the unrestricted MIDAS scheme. Our approach produces more accurate nowcasts compared to

these alternatives.

The inclusion of financial series is not common in traditional nowcasting models, see e.g. Bok,

Caratelli, Giannone, Sbordone, and Tambalotti (2018), on the grounds that though timely, financial

data is noisy hence do not contribute to the accuracy of the nowcasts. One may wonder how
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Rel-RMSE DM-stat-1 DM-stat-2 DM-stat-3 DM-stat-4

2-month horizon

PCA-OLS 0.982 0.416 2.772 0.350 2.978

Ridge-U-MIDAS 0.918 -0.188 1.073 -1.593 0.281

LASSO-U-MIDAS 0.996 0.275 1.280 -1.983 -0.294

Elastic Net-U-MIDAS 0.907 -0.266 0.976 -1.725 0.042

sg-LASSO-MIDAS 0.779 -2.038 -2.349

NY Fed 0.946 2.038 2.349

1-month horizon

PCA-OLS 1.028 2.296 3.668 2.010 3.399

Ridge-U-MIDAS 0.940 0.927 2.063 -0.184 1.979

LASSO-U-MIDAS 1.044 1.286 1.996 -0.397 1.498

Elastic Net-U-MIDAS 0.990 1.341 2.508 0.444 2.859

sg-LASSO-MIDAS 0.672 -1.426 -1.341

NY Fed 0.805 1.426 1.341

SPF (median) 0.639 -2.317 -0.490 -1.743 0.282

End-of-quarter

PCA-OLS 0.988 3.414 3.400 3.113 3.155

Ridge-U-MIDAS 0.939 1.918 1.952 0.867 1.200

LASSO-U-MIDAS 1.014 1.790 1.773 0.276 0.517

Elastic Net-U-MIDAS 0.947 2.045 2.034 1.198 1.400

sg-LASSO-MIDAS 0.696 -0.156 -0.159

NY Fed 0.707 0.156 0.159

p-value of aSPA test

0.042 0.056

Table 2: Nowcast comparison table – Nowcast horizons are 2- and 1-month ahead, as well as the end of the

quarter. Column Rel-RMSE reports root mean squared forecasts error relative to the AR(1) model. Column

DM-stat-1 reports Diebold and Mariano (1995) test statistic of all models relative to the NY FED nowcast, while

column DM-stat-2 reports the Diebold Mariano test statistic relative to the sg-LASSO model. Columns DM-stat-3

and DM-stat-4 report the Diebold Mariano test statistic for the same models, but excludes the recession period.

For the 1-month horizon, the last row SPF (median) reports test statistics for the same models comparing with the

SPF median nowcasts. The last row reports the p-value of the average Superior Predictive Ability (aSPA) test, see

Quaedvlieg (2019), over the three horizons of sg-LASSO-MIDAS model compared to the NY Fed nowcasts, including

(left) and excluding (right) financial crisis period. Out-of-sample period: 2002 Q1 to 2017 Q2.
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our model performs excluding these series. Therefore, we run our nowcasting regressions using

only macro and news attention series, excluding financial data; results are reported in the Online

Appendix Section A.5.1. Notably, results are slightly worse compared with the results that include

financial data, supporting our initial choice. Similarly, Andreou, Ghysels, and Kourtellos (2013)

find that financial data is helpful in GDP nowcasting applications.

Table 2 also features an entry called SPF (median), where we report results for the median

survey of professional nowcasts for the 1-month horizon, and analyze how the model-based now-

casts compare with the predictions using the publicly available Survey of Professional Forecasters

maintained by the Federal Reserve Bank of Philadelphia. We find that the sg-LASSO-MIDAS

model-based nowcasts are similar to the SPF-implied nowcasts. We also find that the NY Fed

nowcasts are significantly worse than the SPF.

2005 2010 2015

0

20

40

60

80
2-month
1-month
End of quarter

Quarters

cu
m

ul
at

iv
e 

su
m

 o
f 

lo
ss

 d
iff

er
en

tia
l

Figure 2: Cumulative sum of loss differentials of sg-LASSO-MIDAS model nowcasts including financial and textual

data compared with the New York Fed model for three nowcasting horizons: solid black line cumsfe for the 2-months

horizon, dash-dotted black line - cumsfe for the 1-month horizon, and dotted line for the end-of-quarter nowcasts.

The gray shaded area corresponds to the NBER recession period.

In Figure 2 we plot the cumulative sum of squared forecast error (CUMSFE) loss differential of

sg-LASSO-MIDAS versus NY Fed nowcasts for the three horizons. The CUMSFE is computed as

CUMSFEt,t+k =
t+k∑
q=t

e2q,M1 − e2q,M2

for model M1 versus M2. A positive value of CUMSFEt,t+k means that the model M1 has larger
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squared forecast errors compared to model M2 up to t+k, and negative values imply the opposite.

In our case, M1 is the New York Fed prediction error, while M2 is the sg-LASSO-MIDAS model.

We observe persistent gains for the 2- and 1-month horizons throughout the out-of-sample period.

When comparing the sg-LASSO-MIDAS results with additional financial and textual news series

versus those based on macro data only, we see a notable improvement at the 1-month horizon and

a more modest one at the end-of-quarter horizons. In Figure 3, we plot the average CUMSFE for

the 1-month and end-of-quarter horizons and observe that the largest gains of additional financial

and textual news data are achieved during the financial crisis.

The result in Figure 3 prompts the question whether our results are mostly driven by this

unusual period in our out-of-sample data. To assess this, we turn our attention again to the

last two columns of Table 2 reporting Diebold and Mariano (1995) test statistics which exclude

the financial crisis period. Compared to the tests previously discussed, we find that the results

largely remain the same, but some alternatives seem to slightly improve (e.g. LASSO or Elastic

Net). Note that this also implies that our method performs better during periods with heavy-

tailed observations, such as the financial crisis. It should also be noted that overall there is a slight

deterioration of the average Superior Predictive Ability test over all three horizons when we remove

the financial crisis.
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Figure 3: Cumulative sum of loss differentials (CUMSFE) of sg-LASSO-MIDAS nowcasts when we include vs.

when we exclude the additional financial and textual news data, averaged over 1-month and the end-of-quarter

horizons. The gray shaded area corresponds to the NBER recession period.
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In Figure 4, we plot the fraction of selected covariates by the sg-LASSO-MIDAS model when

we use the macro, financial, and textual analysis data. For each reference quarter, we compute the

ratio of each group of variables relative to the total number of covariates. In each subfigure, we

plot the three different horizons. For all horizons, the macro series are selected more often than

financial and/or textual data. The number of selected series increases with the horizon, however,

the pattern of denser macro series and sparser financial and textual series is visible for all three

horizons. The results are in line with the literature – macro series tend to co-move, hence we see

a denser pattern in the selection of such series, see e.g. Bok, Caratelli, Giannone, Sbordone, and

Tambalotti (2018). On the other hand, the alternative textual analysis data appear to be very

sparse, yet still important for nowcasting accuracy, see also Thorsrud (2020).
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Figure 4: The fraction of selected covariates attributed to macro (light gray), financial (dark gray), and textual

(black) data for three monthly horizons.
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6 Conclusion

This paper offers a new perspective on the high-dimensional time series regressions with data

sampled at the same or mixed frequencies and contributes more broadly to the rapidly growing lit-

erature on the estimation, inference, forecasting, and nowcasting with regularized machine learning

methods. The first contribution of the paper is to introduce the sparse-group LASSO estimator for

high-dimensional time series regressions. An attractive feature of the estimator is that it recognizes

time series data structures and allows us to perform the hierarchical model selection within and

between groups. The classical LASSO and the group LASSO are covered as special cases.

To recognize that the economic and financial time series have typically heavier than Gaussian

tails, we use a new Fuk-Nagaev concentration inequality, from Babii, Ghysels, and Striaukas (2020),

valid for a large class of τ -mixing processes, including α-mixing processes commonly used in econo-

metrics. Building on this inequality, we establish the nonasymptotic and asymptotic properties of

the sparse-group LASSO estimator.

Our empirical application provides new perspectives on applying machine learning methods to

real-time forecasting, nowcasting, and monitoring with time series data, including unconventional

data, sampled at different frequencies. To that end, we introduce a new class of MIDAS regressions

with dictionaries linear in the parameters and based on orthogonal polynomials with lag selection

performed by the sg-LASSO estimator. We find that the sg-LASSO outperforms the unstructured

LASSO in small samples and conclude that incorporating specific data structures should be helpful

in various applications.

Our empirical results also show that the sg-LASSO-MIDAS using only macro data performs

statistically better than NY Fed nowcasts at 2-month horizons and overall for the 1- and 2-month

and end-of-quarter horizons. This is a comparison involving the same data and, therefore, pertains

to models. This implies that machine learning models are, for this particular case, better than the

state space dynamic factor models. When we add the financial data and the textual news data, a

total of 118 series, we find significant improvements in prediction quality for the shorter 1-month

and end-of-quarter horizons.
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Chernozhukov, V., W. K. Härdle, C. Huang, and W. Wang (2020): “Lasso-driven infer-

ence in time and space,” Annals of Statistics (forthcoming).

28

http://structureofnews.com


Dedecker, J., P. Doukhan, G. Lang, L. R. J. Rafael, S. Louhichi, and C. Prieur

(2007): “Weak dependence,” in Weak dependence: With examples and applications, pp. 9–20.

Springer.

Dedecker, J., and C. Prieur (2004): “Coupling for τ -dependent sequences and applications,”

Journal of Theoretical Probability, 17(4), 861–885.

(2005): “New dependence coefficients. Examples and applications to statistics,” Proba-

bility Theory and Related Fields, 132(2), 203–236.

Delle Monache, D., and I. Petrella (2019): “Efficient matrix approach for classical inference

in state space models,” Economics Letters, 181, 22–27.

Diebold, F. X., and R. S. Mariano (1995): “Comparing predictive accuracy,” Journal of

Business and Economic Statistics, 13(3), 253–263.

Duarte, C., P. M. Rodrigues, and A. Rua (2017): “A mixed frequency approach to the

forecasting of private consumption with ATM/POS data,” International Journal of Forecasting,

33(1), 61–75.

Foroni, C., M. Marcellino, and C. Schumacher (2015): “Unrestricted mixed data sam-

pling (U-MIDAS): MIDAS regressions with unrestricted lag polynomials,” Journal of the Royal

Statistical Society: Series A (Statistics in Society), 178(1), 57–82.

Francq, C., and J.-M. Zakoian (2019): GARCH models: structure, statistical inference and

financial applications. John Wiley & Sons.

Fuk, D. K., and S. V. Nagaev (1971): “Probability inequalities for sums of independent random

variables,” Theory of Probability and Its Applications, 16(4), 643–660.

Galbraith, J. W., and G. Tkacz (2018): “Nowcasting with payments system data,” Interna-

tional Journal of Forecasting, 34(2), 366–376.

Ghysels, E., C. Horan, and E. Moench (2018): “Forecasting through the Rearview Mirror:

Data Revisions and Bond Return Predictability.,” Review of Financial Studies, 31(2), 678–714.

29



Ghysels, E., and H. Qian (2019): “Estimating MIDAS regressions via OLS with polynomial

parameter profiling,” Econometrics and Statistics, 9, 1–16.

Ghysels, E., P. Santa-Clara, and R. Valkanov (2006): “Predicting volatility: getting the

most out of return data sampled at different frequencies,” Journal of Econometrics, 131, 59–95.

Ghysels, E., A. Sinko, and R. Valkanov (2007): “MIDAS regressions: Further results and

new directions,” Econometric Reviews, 26(1), 53–90.

Giannone, D., M. Lenza, and G. E. Primiceri (2018): “Economic predictions with big data:

The illusion of sparsity,” Staff Reports 847, Federal Reserve Bank of New York.

Han, Y., and R. S. Tsay (2017): “High-dimensional linear regression for dependent observations

with application to nowcasting,” arXiv preprint arXiv:1706.07899.

Jiang, W. (2009): “On Uniform Deviations of General Empirical Risks with Unboundedness,

Dependence, and High Dimensionality.,” Journal of Machine Learning Research, 10(4).

Kock, A. B., and L. Callot (2015): “Oracle inequalities for high dimensional vector autore-

gressions,” Journal of Econometrics, 186(2), 325–344.

Marsilli, C. (2014): “Variable selection in predictive MIDAS models,” Working papers 520,

Banque de France.

Medeiros, M. C., and E. F. Mendes (2016): “`1-regularization of high-dimensional time-

series models with non-Gaussian and heteroskedastic errors,” Journal of Econometrics, 191(1),

255–271.

(2017): “Adaptive LASSO estimation for ARDL models with GARCH innovations,”

Econometric Reviews, 36(6-9), 622–637.

Mogliani, M., and A. Simoni (2020): “Bayesian MIDAS penalized regressions: estimation,

selection, and prediction,” Journal of Econometrics (forthcoming).

Moriwaki, D. (2019): “Nowcasting Unemployment Rates with Smartphone GPS Data,” in Inter-

national Workshop on Multiple-Aspect Analysis of Semantic Trajectories, pp. 21–33. Springer.

30



Negahban, S. N., P. Ravikumar, M. J. Wainwright, and B. Yu (2012): “A unified frame-

work for high-dimensional analysis of M -estimators with decomposable regularizers,” Statistical

Science, 27(4), 538–557.

Quaedvlieg, R. (2019): “Multi-horizon forecast comparison,” Journal of Business and Economic

Statistics, pp. 1–14.

Raju, S., and M. Balakrishnan (2019): “Nowcasting economic activity in India using payment

systems data,” Journal of Payments Strategy and Systems, 13(1), 72–81.

Simon, N., J. Friedman, T. Hastie, and R. Tibshirani (2013): “A sparse-group LASSO,”

Journal of Computational and Graphical Statistics, 22(2), 231–245.

Thorsrud, L. A. (2020): “Words are the new numbers: A newsy coincident index of the business

cycle,” Journal of Business and Economic Statistics, 38(2), 393–409.

Tibshirani, R. (1996): “Regression shrinkage and selection via the lasso,” Journal of the Royal

Statistical Society, Series B (Methodological), 58, 267–288.

Uematsu, Y., and S. Tanaka (2019): “High-dimensional macroeconomic forecasting and vari-

able selection via penalized regression,” Econometrics Journal, 22, 34–56.

van de Geer, S. (2016): Estimation and testing under sparsity: École d’Été de Probabilités de
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A.1 Dictionaries

In this section, we review the choice of dictionaries for the MIDAS weight function. It is possible

to construct dictionaries using arbitrary sets of functions, including a mix of algebraic polynomials,

trigonometric polynomials, B-splines, Haar basis, or wavelets. In this paper, we mostly focus on

dictionaries generated by orthogonalized algebraic polynomials, though it might be interesting to

tailor the dictionary for each particular application. The attractiveness of algebraic polynomials

comes from their ability to generate a variety of shapes with a relatively low number of parameters,

which is especially desirable in low signal-to-noise environments. The general family of appropriate

orthogonal algebraic polynomials is given by Jacobi polynomials that nest Legendre, Gegenbauer,

and Chebychev’s polynomials as a special case.

Example A.1.1 (Jacobi polynomials). Applying the Gram-Schmidt orthogonalization to the power

polynomials {1, x, x2, x3, . . . } with respect to the measure

dµ(x) = (1− x)α(1 + x)βdx, α, β > −1,

on [−1, 1], we obtain Jacobi polynomials. In practice Jacobi polynomials can be computed through

the well-known tree-term recurrence relation for n ≥ 0

P
(α,β)
n+1 (x) = axP (α,β)

n (x) + bP (α,β)
n (x)− cP (α,β)

n−1 (x)

with a = (2n+α+β+1)(2n+α+β+2)/2(n+1)(n+α+β+1), b = (2n+α+β+1)(α2−β2)/2(n+

1)(n+α+β+1)(2n+α+β), and c = (α+n)(β+n)(2n+α+β+2)/(n+1)(n+α+β+1)(2n+α+β).

To obtain the orthogonal basis on [0, 1], we shift Jacobi polynomials with affine bijection x 7→ 2x−1.

For α = β, we obtain Gegenbauer polynomials, for α = β = 0, we obtain Legendre polynomials,

while for α = β = −1/2 or α = β = 1/2, we obtain Chebychev’s polynomials of two kinds.

In the mixed frequency setting, non-orthogonalized polynomials, {1, x, x2, x3, . . . }, are also

called Almon polynomials. It is preferable to use orthogonal polynomials in practice due to re-

duced multicollinearity and better numerical properties. At the same time, orthogonal polynomials

are available in Matlab, R, Python, and Julia packages. Legendre polynomials is our default rec-

ommendation, while other choices of α and β are preferable if we want to accommodate MIDAS

weights with other integrability/tail properties.
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We noted in the main body of the paper that the specification in equation (2) deviates from

the standard MIDAS polynomial specification as it results in a linear regression model - a subtle

but key innovation as it maps MIDAS regressions in the standard regression framework. Moreover,

casting the MIDAS regressions in a linear regression framework renders the optimization problem

convex, something only achieved by Siliverstovs (2017) using the U-MIDAS of Foroni, Marcellino,

and Schumacher (2015) which does not recognize the mixed frequency data structure, unlike our

sg-LASSO.

A.2 Proofs of main results

Lemma A.2.1. Consider ‖.‖ = α|.|1 + (1 − α)|.|2, where |.|q is `q norm on Rp. Then the dual

norm of ‖.‖, denoted ‖.‖∗, satisfies

‖z‖∗ ≤ α|z|∗1 + (1− α)|z|∗2, ∀z ∈ Rp,

where |.|∗1 is the dual norm of |.|1 and |.|∗2 is the dual norm of |.|2.

Proof. Clearly, ‖.‖ is a norm. By the convexity of x 7→ x−1 on (0,∞)

‖z‖∗ = sup
b6=0

|〈z, b〉|
‖b‖

≤ sup
b 6=0

{
α
|〈z, b〉|
|b|1

+ (1− α)
|〈z, b〉|
|b|2

}
≤ α sup

b6=0

|〈z, b〉|
|b|1

+ (1− α) sup
b6=0

|〈z, b〉|
|b|2

= α|z|∗1 + (1− α)|z|∗2.

Proof of Theorem 3.1. By Hölder’s inequality for every ς > 0

max
j∈[p]
‖u0x0,j‖ς ≤ ‖u0‖ςq1 max

j∈[p]
‖x0,j‖ςq2

with q−1
1 + q−1

2 = 1 and q1, q2 ≥ 1. Therefore, under Assumption 3.1 (i), maxj∈[p] ‖u0x0,j‖ς = O(1)

with ς = qr/(q + r). Recall also that E[utxt,j] = 0,∀j ∈ [p], see equation (3), which in conjunction

with Assumption 3.1 (ii) verifies conditions of Theorem A.1 and shows that there exists C > 0

such that for every δ ∈ (0, 1)

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

utxt

∣∣∣∣∣
∞

≤ C
( p

δT κ−1

)1/κ

∨
√

log(8p/δ)

T

)
≥ 1− δ. (A.1)
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Let G∗ = maxG∈G |G| be the size of the largest group in G. Note that the sg-LASSO penalty Ω is

a norm. By Lemma A.2.1, its dual norm satisfies

Ω∗(X>u/T ) ≤ α|X>u/T |∞ + (1− α) max
G∈G
|(X>u)G/T |2

≤ (α + (1− α)
√
G∗)|X>u/T |∞

≤ (α + (1− α)
√
G∗)C

( p

δT κ−1

)1/κ

∨
√

log(8p/δ)

T

≤ λ/c,

(A.2)

where the first inequality follows since |z|∗1 = |z|∞ and
(∑

G∈G |zG|2
)∗

= maxG∈G |zG|2, the second

by elementary computations, the third by equation (A.1) with probability at least 1−δ for every δ ∈

(0, 1), and the last from the definition of λ in Assumption 3.3, where c > 1 is as in Assumption 3.2.

By Fermat’s rule, the sg-LASSO satisfies

X>(Xβ̂ − y)/T + λz∗ = 0

for some z∗ ∈ ∂Ω(β̂), where ∂Ω(β̂) is the subdifferential of b 7→ Ω(b) at β̂. Taking the inner product

with β − β̂

〈X>(y −Xβ̂), β − β̂〉T = λ〈z∗, β − β̂〉 ≤ λ
{

Ω(β)− Ω(β̂)
}
,

where the inequality follows from the definition of the subdifferential. Using y = m + u and

rearranging this inequality

‖X(β̂ − β)‖2
T − λ

{
Ω(β)− Ω(β̂)

}
≤ 〈X>u, β̂ − β〉T + 〈X>(m−Xβ), β̂ − β〉T

≤ Ω∗
(
X>u/T

)
Ω(β̂ − β) + ‖X(β̂ − β)‖T‖m−Xβ‖T

≤ c−1λΩ(β̂ − β) + ‖X(β̂ − β)‖T‖m−Xβ‖T .

where the second line follows by the dual norm inequality and the last by Ω∗(X>u/T ) ≤ λ/c as

shown in equation (A.2). Therefore,

‖X∆‖2
T ≤ c−1λΩ(∆) + ‖X∆‖T‖m−Xβ‖T + λ

{
Ω(β)− Ω(β̂)

}
≤ (c−1 + 1)λΩ(∆) + ‖X∆‖T‖m−Xβ‖T

(A.3)

with ∆ = β̂ − β. Note that the sg-LASSO penalty can be decomposed as a sum of two seminorms

Ω(b) = Ω0(b) + Ω1(b), ∀b ∈ Rp with

Ω0(b) = α|bS0|1 + (1− α)
∑
G∈G0

|bG|2 and Ω1(b) = α|bSc
0
|1 + (1− α)

∑
G∈Gc0

|bG|2.
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Note also that Ω1(β) = 0 and Ω1(β̂) = Ω1(∆). Then by the triangle inequality

Ω(β)− Ω(β̂) ≤ Ω0(∆)− Ω1(∆). (A.4)

If ‖m−Xβ‖T ≤ 2−1‖X∆‖T , then it follows from the first inequality in equation (A.3) and equation

(A.4) that

‖X∆‖2
T ≤ 2c−1λΩ(∆) + 2λ {Ω0(∆)− Ω1(∆)} .

Since the left side of this equation is positive, this shows that Ω1(∆) ≤ c0Ω0(∆) with c0 = (c +

1)/(c− 1), and whence ∆ ∈ C(c0), cf., Assumption 3.2. Then

Ω(∆) ≤ (1 + c0)Ω0(∆)

≤ (1 + c0)

α√|S0||∆S0|2 + (1− α)
√
|G0|
√∑

G∈G0

|∆G|22


≤ (1 + c0)

√
sα

√∑
G∈G0

|∆G|22

≤ (1 + c0)
√
sα/γ∆>Σ∆,

(A.5)

where we use the Jensen’s inequality, Assumption 3.2, and the definition of
√
sα. Next, note that

∆>Σ∆ = ‖X∆‖2
T + ∆>(Σ− Σ̂)∆

≤ 2(c−1 + 1)λΩ(∆) + Ω(∆)Ω∗
(

(Σ̂− Σ)∆
)

≤ 2(c−1 + 1)λΩ(∆) + Ω2(∆)G∗|vech(Σ̂− Σ)|∞,

(A.6)

where the first inequality follows from equation (A.3) and the dual norm inequality and the second

by Lemma A.2.1 and elementary computations

Ω∗
(

(Σ̂− Σ)∆
)
≤ α|(Σ̂− Σ)∆|∞ + (1− α) max

G∈G

∣∣∣[(Σ̂− Σ)∆]G

∣∣∣
2

≤ α|∆|1|vech(Σ̂− Σ)|∞ + (1− α)
√
G∗|vech(Σ̂− Σ)|∞|∆|1

≤ G∗|vech(Σ̂− Σ)|∞Ω(∆).

Combining the inequalities obtained in equations (A.5 and A.6)

Ω(∆) ≤ (1 + c0)2γ−1sα

{
2(c−1 + 1)λ+G∗|vech(Σ̂− Σ)|∞Ω(∆)

}
≤ 2(1 + c0)2γ−1sα(c−1 + 1)λ+ (1− A−1)Ω(∆),

(A.7)
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where the second line holds on the event E , {|vech(Σ̂−Σ)|∞ ≤ γ/2G∗sα(1+2c0)2} with 1−A−1 =

(1 + c0)2/2(1 + 2c0)2 < 1. Therefore, inequalities in equation (A.3 and A.7) yield

Ω(∆) ≤ 2A

γ
(1 + c0)2(c−1 + 1)sαλ

‖X∆‖2
T ≤

4A

γ
(1 + c0)2(c−1 + 1)2sαλ

2.

On the other hand, if ‖m−Xβ‖T > 2−1‖X∆‖T , then

‖X∆‖2
T ≤ 4‖m−Xβ‖2

T .

Therefore, on the event E we always have

‖X∆‖2
T ≤ C1sαλ

2 + 4‖m−Xβ‖2
T (A.8)

with C1 = 4Aγ−1(1 + c0)2(c−1 + 1)2. This proves the first claim of Theorem 3.1 if we show that

Pr(Ec) ≤ 2p(p + 1)(c1T
1−µsµα + exp(−c2T/s

2
α). To that end, by the Cauchy-Schwartz inequality

under Assumptions 3.1 (i)

max
1≤j≤k≤p

‖x0,jx0,k‖r/2 ≤ max
j∈[p]
‖x0,j‖2

r = O(1).

This in conjunction with Assumption 3.1 (ii) verifies assumptions of Babii, Ghysels, and Striaukas

(2020), Theorem 3.1 and shows that

Pr(Ec) = Pr

(
|vech(Σ̂− Σ)|∞ >

γ

2G∗sα(1 + 2c0)2

)
≤ c1T

1−µsµαp(p+ 1) + 2p(p+ 1) exp

(
− c2T

2

s2
αB

2
T

)
for some c1, c2 > 0 and B2

T = maxj,k∈[p]

∑T
t=1

∑T
l=1 |Cov(xt,jxt,k, xl,jxl,k)|. Lastly, under Assump-

tion 3.1, by Babii, Ghysels, and Striaukas (2020), Lemma A.1.2 B2
T = O(T ).

To prove the second claim of Theorem 3.1, suppose first that ∆ ∈ C(2c0). Then on the event E

Ω2(∆) = (Ω0(∆) + Ω1(∆))2

≤ (1 + 2c0)2Ω2
0(∆)

≤ (1 + 2c0)2∆>Σ∆sα/γ

= (1 + 2c0)2
{
‖X∆‖2

T + ∆>(Σ− Σ̂)∆
}
sα/γ

≤ (1 + 2c0)2
{
C1sαλ

2 + 4‖m−Xβ‖2
T + Ω2(∆)G∗|vech(Σ̂− Σ)|∞

}
sα/γ

≤ (1 + 2c0)2
{
C1sαλ

2 + 4‖m−Xβ‖2
T

}
sα/γ +

1

2
Ω2(∆),
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where we use the inequality in equations (A.5, A.6, and A.8). Therefore,

Ω2(∆) ≤ 2(1 + 2c0)2
{
C1sαλ

2 + 4‖m−Xβ‖2
T

}
sα/γ. (A.9)

On the other hand, if ∆ 6∈ C(2c0), then ∆ 6∈ C(c0), which as we have already shown implies

‖m−Xβ‖T > 2−1‖X∆‖T . In conjunction with equations (A.3 and A.4), this shows that

0 ≤ λc−1Ω(∆) + 2‖m−Xβ‖2
T + λ {Ω0(∆)− Ω1(∆)} ,

and whence

Ω1(∆) ≤ c0Ω0(∆) +
2c

λ(c− 1)
‖m−Xβ‖2

T

≤ 1

2
Ω1(∆) +

2c

λ(c− 1)
‖m−Xβ‖2

T .

This shows that

Ω(∆) ≤ (1 + (2c0)−1)Ω1(∆)

≤ (1 + (2c0)−1)
4c

λ(c− 1)
‖m−Xβ‖2

T .

Combining this with the inequality in equation (A.9), we obtain the second claim of Theorem 3.1.

The following result is proven in Babii, Ghysels, and Striaukas (2020), see their Theorem 3.1.

Theorem A.1. Let (ξt)t∈Z be a centered stationary stochastic process in Rp such that (i) for some

ς > 2, maxj∈[p] ‖ξ0,j‖ς = O(1); (ii) for every j ∈ [p], τ -mixing coefficients of ξt,j satisfy τ
(j)
k ≤ ck−a

for some constants c > 0 and a > (ς − 1)/(ς − 2). Then there exists C > 0 such that for every

δ ∈ (0, 1)

Pr

(∣∣∣∣∣ 1

T

T∑
t=1

ξt

∣∣∣∣∣
∞

≤ C
( p

δT κ−1

)1/κ

∨
√

log(8p/δ)

T

)
≥ 1− δ

with κ = ((a+ 1)ς − 1)/(a+ ς − 1).

A.3 ARDL-MIDAS: moments and τ-mixing coefficients

The ARDL-MIDAS process (yt)t∈Z is defined as

φ(L)yt = ξt,

where φ(L) = I − ρ1L − ρ2L
2 − · · · − ρJLJ is a lag polynomial and ξt =

∑p
j=0 xt,jγj + ut. The

process (yt)t∈Z is τ -mixing and has finite moments of order q > 1 as illustrated below.
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Assumption A.3.1. Suppose that (ξt)t∈Z is a stationary process such that (i) ‖ξt‖q <∞ for some

q > 1; (ii) the β-mixing coefficients satisfy βk ≤ Cak for some a ∈ (0, 1) and C > 0; and (iii)

φ(z) 6= 0 for all z ∈ C such that |z| ≤ 1.

Note that by Davydov (1973), (ii) holds if (ξt)t∈Z is a geometrically ergodic Markov process

and that (iii) rules out the unit root process.

Proposition A.3.1. Under Assumption A.3.1, the ARDL-MIDAS process has moments of order

q > 1 and τ -mixing coefficients τk ≤ C(abk + ck) for some c ∈ (0, 1), C > 0, and b = 1− 1/q.

Proof. Under (iii) we can invert the autoregressive lag polynomial and obtain

yt =
∞∑
j=0

ψjξt−j

for some (ψj)
∞
j=0 ∈ `1. Note that (yt)t∈Z has dependent innovations. Clearly, (yt)t∈Z is stationary

provided that (ξt)t∈Z is stationary, which is the case by the virtue of Assumption A.3.1. Next, since

‖yt‖q ≤
∞∑
j=0

|ψj|‖ξ0‖q

and ‖ξ0‖q <∞ under (i), we verify that ‖yt‖q <∞. Let (ξ′t)t∈Z be a stationary process distributed

as (ξt)t∈Z and independent of (ξt)t≤0. Then by Dedecker and Prieur (2005), Example 1, the τ -mixing

coefficients of (yt)t∈Z satisfy

τk ≤ ‖ξ0 − ξ′0‖q
∑
j≥k

|ψj|+ 2
k−1∑
j=0

|ψj|
∫ βk−j

0

Qξ0(u)du

≤ 2‖ξ0‖q
∑
j≥k

|ψj|+ 2‖ξ0‖q
k−1∑
j=0

|ψj|β1−1/q
k−j ,

where (βk)k≥1 are β-mixing coefficients of (ξt)t∈Z and the second line follows by Hölder’s inequality.

Brockwell and Davis (1991), p.85 shows that there exist c ∈ (0, 1) and K > 0 such that |ψj| ≤ Kcj.

Therefore, ∑
j≥k

|ψj| = O(ck)

and under (ii)

k−1∑
j=0

|ψj|β1−1/q
k−j ≤ CK

k−1∑
j=0

cja(k−j)(q−1)/q ≤

CK
ak(q−1)/q−ck
1−ca(1−q)/q if c 6= a(q−1)/q,

CKkak(q−1)/q otherwise.

This proves the second statement.
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A.4 Monte Carlo Simulations

FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M

T Baseline scenario εh ∼i.i.d. student-t(5)

50 1.920 2.086 2.145 1.848 1.731 1.537 2.081 2.427 2.702 2.399 2.038 1.702

0.039 0.042 0.043 0.038 0.036 0.031 0.042 0.053 0.062 0.056 0.050 0.041

100 1.423 1.670 1.791 1.670 1.517 1.320 1.532 1.933 2.152 1.831 1.523 1.315

0.029 0.033 0.036 0.034 0.031 0.027 0.030 0.039 0.044 0.037 0.031 0.027

200 1.292 1.502 1.645 1.407 1.268 1.170 1.410 1.741 2.017 1.493 1.278 1.194

0.026 0.030 0.033 0.028 0.026 0.024 0.029 0.035 0.043 0.031 0.026 0.024

High-frequency process: VAR(1) Legendre degree L = 5

50 1.869 2.645 2.863 2.192 1.712 1.431 1.920 2.086 2.145 1.848 1.741 1.598

0.039 0.053 0.057 0.047 0.036 0.030 0.039 0.042 0.043 0.038 0.035 0.032

100 1.474 2.071 2.312 1.622 1.373 1.247 1.423 1.670 1.791 1.670 1.553 1.368

0.030 0.042 0.048 0.033 0.028 0.026 0.029 0.033 0.036 0.034 0.032 0.028

200 1.335 1.919 2.080 1.369 1.239 1.216 1.292 1.502 1.645 1.407 1.298 1.187

0.026 0.039 0.042 0.029 0.025 0.025 0.026 0.030 0.033 0.028 0.026 0.024

Legendre degree L = 10 Low frequency noise level σ2
u=5

50 1.920 2.086 2.145 1.848 1.778 1.661 8.927 9.048 9.020 7.714 7.308 6.929

0.039 0.042 0.043 0.038 0.037 0.034 0.182 0.184 0.181 0.155 0.149 0.140

100 1.423 1.670 1.791 1.670 1.617 1.446 6.643 7.300 7.536 7.510 6.953 6.305

0.029 0.033 0.036 0.034 0.033 0.029 0.135 0.144 0.153 0.154 0.144 0.128

200 1.292 1.502 1.645 1.407 1.344 1.225 6.008 6.580 6.902 6.809 6.270 5.703

0.026 0.030 0.033 0.028 0.027 0.025 0.123 0.131 0.137 0.137 0.127 0.115

Half high-frequency lags Number of covariates p = 50

50 2.256 2.117 2.505 1.885 1.816 1.623 1.902 1.766 1.621

0.047 0.044 0.050 0.038 0.037 0.033 0.038 0.035 0.032

100 1.655 1.685 2.079 1.679 1.595 1.370 3.593 3.277 3.318 1.754 1.599 1.403

0.033 0.033 0.041 0.034 0.032 0.027 0.075 0.068 0.068 0.035 0.032 0.028

200 1.528 1.539 2.005 1.365 1.355 1.202 1.863 1.933 2.019 1.524 1.364 1.189

0.031 0.030 0.040 0.027 0.027 0.024 0.038 0.039 0.039 0.030 0.027 0.024

Baseline scenario, ρ = 0.7 Number of covariates p = 50, ρ = 0.7

50 2.411 3.019 3.471 2.786 2.298 1.720 4.588 3.604 2.145

0.051 0.059 0.069 0.061 0.051 0.036 0.093 0.077 0.044

100 1.717 2.423 2.943 1.710 1.501 1.331 5.351 5.030 4.854 2.275 1.910 1.424

0.034 0.048 0.058 0.035 0.031 0.027 0.111 0.102 0.099 0.048 0.040 0.029

200 1.564 2.135 2.657 1.340 1.269 1.222 2.384 2.826 3.290 1.499 1.385 1.217

0.032 0.043 0.052 0.027 0.026 0.025 0.048 0.056 0.065 0.030 0.028 0.024

Table A.1: Forecasting accuracy results. – See Table A.2
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FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M FLOW STOCK MIDDLE LASSO-U LASSO-M SGL-M

T Baseline scenario εh ∼i.i.d. student-t(5)

50 1.987 2.113 2.184 1.870 1.753 1.606 2.257 2.391 2.649 2.422 2.113 1.801

0.043 0.042 0.043 0.038 0.036 0.032 0.046 0.054 0.057 0.052 0.046 0.038

100 1.446 1.632 1.769 1.667 1.541 1.345 1.659 1.889 2.139 1.903 1.678 1.462

0.029 0.032 0.034 0.033 0.031 0.026 0.033 0.038 0.043 0.038 0.033 0.029

200 1.318 1.482 1.609 1.448 1.328 1.220 1.505 1.728 1.971 1.608 1.411 1.297

0.026 0.029 0.032 0.029 0.026 0.024 0.030 0.035 0.041 0.033 0.028 0.026

High-frequency process: VAR(1) Legendre degree L = 5

50 2.086 2.418 2.856 2.254 1.817 1.503 1.987 2.113 2.184 1.870 1.767 1.635

0.044 0.050 0.057 0.049 0.039 0.031 0.043 0.042 0.043 0.038 0.036 0.033

100 1.642 1.935 2.365 1.690 1.459 1.328 1.446 1.632 1.769 1.667 1.564 1.389

0.033 0.039 0.048 0.035 0.030 0.028 0.029 0.032 0.034 0.033 0.031 0.027

200 1.475 1.771 2.247 1.442 1.312 1.268 1.318 1.482 1.609 1.448 1.351 1.230

0.029 0.036 0.046 0.029 0.027 0.026 0.026 0.029 0.032 0.029 0.027 0.024

Legendre degree L = 10 Low frequency noise level σ2
u=5

50 1.987 2.113 2.184 1.870 1.799 1.698 9.121 9.208 9.167 7.700 7.397 7.087

0.043 0.042 0.043 0.038 0.037 0.034 0.193 0.184 0.181 0.155 0.150 0.143

100 1.446 1.632 1.769 1.667 1.606 1.454 6.646 7.149 7.433 7.454 6.911 6.222

0.029 0.032 0.034 0.033 0.032 0.029 0.135 0.141 0.144 0.149 0.138 0.123

200 1.318 1.482 1.609 1.448 1.400 1.267 6.052 6.482 6.777 6.835 6.345 5.780

0.026 0.029 0.032 0.029 0.028 0.025 0.122 0.127 0.134 0.137 0.127 0.114

Half high-frequency lags Number of covariates p = 50

50 2.378 2.164 2.540 1.875 1.827 1.723 1.912 1.767 1.611

0.049 0.044 0.049 0.038 0.037 0.035 0.039 0.035 0.033

100 1.765 1.692 2.184 1.810 1.703 1.479 3.703 3.162 3.179 1.762 1.622 1.441

0.035 0.033 0.042 0.036 0.033 0.029 0.076 0.064 0.068 0.035 0.032 0.028

200 1.605 1.520 1.976 1.544 1.495 1.324 1.912 1.871 2.017 1.546 1.428 1.260

0.031 0.029 0.039 0.031 0.029 0.026 0.038 0.037 0.040 0.032 0.029 0.026

Baseline scenario, ρ = 0.7 Number of covariates p = 50, ρ = 0.7

50 2.606 2.872 3.618 2.927 2.599 1.884 4.606 3.816 2.242

0.055 0.058 0.073 0.063 0.054 0.039 0.096 0.083 0.046

100 1.837 2.154 3.020 1.783 1.596 1.412 5.154 4.373 4.764 2.373 2.161 1.520

0.037 0.043 0.059 0.037 0.032 0.028 0.102 0.089 0.100 0.051 0.046 0.030

200 1.661 1.919 2.753 1.389 1.341 1.287 2.622 2.555 3.364 1.563 1.500 1.315

0.033 0.038 0.056 0.027 0.027 0.026 0.052 0.051 0.067 0.032 0.031 0.027

Table A.2: Nowcasting accuracy results.

The table reports simulation results for nowcasting accuracy. The baseline DGP (upper-left block) is with the low-frequency noise level

σ2
u = 1, the degree of Legendre polynomial L = 3, and Gaussian high-frequency noise. All remaining blocks report results for deviations

from the baseline DGP. In the upper-right block, the noise term of high-frequency covariates is student-t(5). Each block reports results

for LASSO-U-MIDAS (LASSO-U), LASSO-MIDAS (LASSO-M), and sg-LASSO-MIDAS (SGL-M) (the last three columns). We also

report results for aggregated predictive regressions with flow aggregation (FLOW), stock aggregation (STOCK), and taking the middle

value (MIDDLE). We vary the sample size T from 50 to 200. Each entry in the odd row is the average mean squared forecast error,

while each even row is the simulation standard error.
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LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M

T=50 T=100 T=200

Baseline scenario

Beta(1, 3) 2.028 1.867 1.312 2.005 1.518 0.733 1.947 0.809 0.388

0.001 0.009 0.015 0.001 0.011 0.010 0.002 0.009 0.005

Beta(2, 3) 1.248 1.192 0.988 1.241 1.042 0.662 1.219 0.710 0.418

0.001 0.006 0.011 0.001 0.006 0.008 0.001 0.006 0.005

Beta(2, 2) 1.093 1.035 0.870 1.088 0.890 0.573 1.073 0.559 0.330

0.001 0.005 0.009 0.001 0.006 0.007 0.001 0.005 0.004

εh ∼i.i.d. student-t(5)

Beta(1, 3) 2.015 1.671 1.023 1.964 1.027 0.465 1.892 0.434 0.248

0.001 0.011 0.014 0.002 0.011 0.007 0.001 0.005 0.004

Beta(2, 3) 1.242 1.107 0.816 1.223 0.807 0.462 1.191 0.479 0.297

0.001 0.007 0.010 0.001 0.007 0.006 0.001 0.005 0.004

Beta(2, 2) 1.088 0.959 0.740 1.075 0.664 0.403 1.051 0.348 0.221

0.001 0.006 0.009 0.001 0.006 0.006 0.001 0.004 0.003

high-frequency process: VAR(1)

Beta(1, 3) 1.944 1.353 0.960 1.909 0.905 0.657 1.871 0.562 0.485

0.003 0.014 0.014 0.002 0.010 0.009 0.002 0.006 0.006

Beta(2, 3) 1.186 0.917 0.821 1.166 0.662 0.594 1.147 0.508 0.490

0.002 0.012 0.013 0.002 0.009 0.008 0.001 0.006 0.005

Beta(2, 2) 1.045 0.778 0.754 1.032 0.550 0.540 1.019 0.412 0.422

0.002 0.011 0.012 0.001 0.008 0.008 0.001 0.005 0.005

Legendre degree L = 5

Beta(1, 3) 2.028 1.907 1.487 2.005 1.619 0.909 1.947 0.915 0.436

0.001 0.009 0.016 0.001 0.010 0.012 0.002 0.009 0.006

Beta(2, 3) 1.248 1.211 1.090 1.241 1.091 0.783 1.219 0.772 0.462

0.001 0.005 0.012 0.001 0.006 0.009 0.001 0.006 0.005

Beta(2, 2) 1.093 1.055 0.962 1.088 0.938 0.672 1.073 0.619 0.356

0.001 0.005 0.010 0.001 0.005 0.008 0.001 0.005 0.005

Baseline scenario, ρ = 0.7

Beta(1, 3) 1.901 1.035 0.526 1.839 0.388 0.243 1.805 0.196 0.166

0.003 0.012 0.009 0.003 0.005 0.004 0.002 0.002 0.002

Beta(2, 3) 1.174 0.742 0.492 1.139 0.428 0.301 1.117 0.310 0.252

0.002 0.009 0.008 0.002 0.005 0.004 0.002 0.003 0.003

Beta(2, 2) 1.031 0.594 0.396 1.002 0.291 0.212 0.983 0.190 0.153

0.002 0.007 0.006 0.002 0.003 0.003 0.002 0.002 0.002

Table A.3: Shape of weights estimation accuracy I.

The table reports results for shape of weights estimation accuracy for the first four DGPs of Tables A.1-A.2 using LASSO-U, LASSO-M

and SGL-M estimators for the weight functions Beta(1, 3), Beta(2, 3), and Beta(2, 2) with sample size T = 50, 100 and 200. Entries in

odd rows are the average mean integrated squared error and in even rows the simulation standard error.
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LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M LASSO-U LASSO-M SGL-M

T=50 T=100 T=200

Legendre degree L = 10

Beta(1, 3) 2.028 1.962 1.685 2.005 1.769 1.150 1.947 1.078 0.528

0.001 0.008 0.016 0.001 0.010 0.013 0.002 0.011 0.007

Beta(2, 3) 1.248 1.247 1.247 1.241 1.168 0.960 1.219 0.869 0.522

0.001 0.004 0.012 0.001 0.005 0.010 0.001 0.006 0.006

Beta(2, 2) 1.093 1.086 1.091 1.088 1.011 0.823 1.073 0.710 0.398

0.001 0.004 0.011 0.001 0.005 0.009 0.001 0.006 0.005

low frequency noise level σ2
u=5

Beta(1, 3) 2.038 1.941 1.588 2.025 1.816 1.109 1.983 1.436 0.563

0.001 0.009 0.019 0.001 0.009 0.014 0.002 0.010 0.009

Beta(2, 3) 1.252 1.215 1.144 1.246 1.160 0.878 1.230 0.996 0.529

0.001 0.006 0.015 0.001 0.005 0.010 0.001 0.006 0.007

Beta(2, 2) 1.096 1.065 1.022 1.092 1.007 0.773 1.080 0.845 0.460

0.001 0.006 0.013 0.001 0.005 0.009 0.001 0.005 0.007

Half high-frequency lags

Beta(1, 3) 2.028 1.826 1.219 1.990 1.504 0.825 1.924 0.964 0.611

0.001 0.009 0.012 0.001 0.010 0.008 0.001 0.007 0.004

Beta(2, 3) 1.252 1.206 1.072 1.243 1.133 0.925 1.224 0.968 0.779

0.000 0.004 0.008 0.001 0.004 0.006 0.001 0.005 0.005

Beta(2, 2) 1.096 1.060 0.991 1.090 1.007 0.878 1.076 0.890 0.783

0.000 0.004 0.008 0.000 0.004 0.006 0.000 0.004 0.004

Number of covariates p = 50

Beta(1, 3) 2.044 1.998 1.586 2.032 1.867 1.061 1.999 1.285 0.512

0.000 0.004 0.012 0.001 0.007 0.011 0.001 0.009 0.006

Beta(2, 3) 1.255 1.238 1.099 1.252 1.191 0.875 1.243 0.963 0.533

0.000 0.002 0.007 0.000 0.004 0.007 0.001 0.005 0.005

Beta(2, 2) 1.099 1.083 0.979 1.097 1.036 0.782 1.091 0.804 0.467

0.000 0.002 0.007 0.000 0.003 0.006 0.000 0.005 0.005

Number of covariates p = 50, ρ = 0.7

Beta(1, 3) 1.996 1.726 0.878 1.902 0.839 0.334 1.835 0.314 0.188

0.002 0.010 0.011 0.002 0.009 0.005 0.002 0.003 0.002

Beta(2, 3) 1.229 1.071 0.692 1.180 0.648 0.344 1.138 0.411 0.248

0.001 0.006 0.008 0.002 0.006 0.004 0.002 0.003 0.003

Beta(2, 2) 1.078 0.925 0.610 1.040 0.495 0.276 1.003 0.272 0.167

0.001 0.005 0.007 0.001 0.005 0.004 0.001 0.002 0.002

Table A.4: Shape of weights estimation accuracy II. – See Table A.3
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(a) LASSO-U-MIDAS
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(b) LASSO-MIDAS
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(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS
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(e) LASSO-MIDAS
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(f) sg-LASSO-MIDAS
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Figure A.1: The figure shows the fitted Beta(1,3) weights. We plot the estimated weights for the LASSO-U-

MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline DGP scenario. The first row plots

weights for the sample size T = 50, the second row plots weights for the sample size T = 200. The black solid line is

the median estimate of the weights function, the black dashed line is the population weight function, and the gray

area is the 90% confidence interval.
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(b) LASSO-MIDAS
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(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS
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(e) LASSO-MIDAS
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Figure A.2: The figure shows the fitted Beta(2,3) weights. We plot the estimated weights for the LASSO-U-

MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline DGP scenario. The first row plots

weights for the sample size T = 50, the second row plots weights for the sample size T = 200. The black solid line is

the median estimate of the weights function, the black dashed line is the population weight function, and the gray

area is the 90% confidence interval.
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(a) LASSO-U-MIDAS
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(c) sg-LASSO-MIDAS
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(d) LASSO-U-MIDAS

2 4 6 8 10 12
0

0.2
0.4
0.6
0.8
1

1.2
1.4

W
ei
gh
t

(e) LASSO-MIDAS
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Figure A.3: The figure shows the fitted Beta(2,2) weights. We plot the estimated weights for the LASSO-U-

MIDAS, LASSO-MIDAS, and sg-LASSO-MIDAS estimators for the baseline DGP scenario. The first row plots

weights for the sample size T = 50, the second row plots weights for the sample size T = 200. The black solid line is

the median estimate of the weights function, the black dashed line is the population weight function, and the gray

area is the 90% confidence interval.
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A.5 Detailed description of data and models

The standard macro variables are collected from Haver Analytics and ALFRED databases. AL-

FRED is a public data source for real-time data made available by the Federal Serve Bank of St.

Louis; see the full list of the series with further details in Table A.5. For series that are collected

from the Haver Analytics database, we use as reported data, that is the first release is used for

each data point. For the data that we collect from ALFRED, full data vintages are used. All

the data is real-time, hence publication delays for each series are taken into consideration and we

align each series accordingly. We use twelve monthly and four quarterly lags for each monthly and

quarterly series respectively and apply Legendre aggregation with polynomial degree set to three.

The groups are defined as lags of each series.

On top of macro data, we add eight financial series which are collected from FRED database;

the full list of the series appears in Table A.6. These series are available in real time, hence

no publication delays are needed in this case. We use three monthly lags and apply Legendre

aggregation with polynomial degree set to two. As for macro, we group all lags of each series.

Lastly, we add textual analysis covariates which are available at http://structureofnews.com/.

The data is real time, i.e., topic models are estimated for each day and the monthly series are

obtained by aggregating daily data; see Bybee, Kelly, Manela, and Xiu (2020) for further details

on the data construction. We use categories of series are potentially closely tied with economic

activity, which are Banks, Economic Growth, Financial Markets, Government, Industry, Interna-

tional Affairs, Labor/income, and Oil & Mining. In total, we add 76 news attention series; the

full list is available in Table A.7. Three lags are used and Legendre aggregation of degree two is

applied to each series. In this case, we group variables based on categories.

To make the comparison with the NY Fed nowcasts as close as possible, we use 15 years (60

quarters) of the data and use rolling window estimation. The first nowcast is for the 2002 Q1

(first quarter that NY Fed publishes its historic nowcasts) and the effective sample size starts at

1988 Q1 (taking 15 years of data accounting for lags). We calculate predictions until the sample is

exhausted, which is 2017 Q2, the last date for which news attention data is available. Real GDP

growth rate data vintages are taken from ALFRED database. Some macro series start later than

1988 Q1, in which case we impute zero values. Lastly, we use four lags of real GDP growth rate in

all models.
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Alternative estimators We implemented the following alternative machine learning nowcasting

methods. The first method is the PCA factor-augmented autoregression, where we estimate the

first principal component of the data panel and use it together with four autoregressive lags. We

denote this model PCA-OLS. We then consider three alternative penalty functions for the same

linear model: ridge, LASSO, and Elastic Net. For these methods, we leave high-frequency lags

unrestricted, and thus we call these methods the unrestricted MIDAS (U-MIDAS). As for the

sg-LASSO-MIDAS model, we tune one- and two-dimensional regularization parameters via 5-fold

cross-validation.

Series Source Units

1 ADP nonfarm private payroll employment Haver Level change (thousands)

2 Building permits ALFRED Level change (thousands)

3 Capacity utilization ALFRED Ppt. change

4 Civilian unemployment rate ALFRED Ppt. change

5 CPI-U: all items ALFRED MoM % change

6 CPI-U: all items less food and energy ALFRED MoM % change

7 Empire State Mfg. survey: general business conditions Haver Index

8 Exports: goods and services Haver MoM % change

9 Export price index Haver MoM % change

10 Housing starts ALFRED MoM % change

11 Imports: goods and services Haver MoM % change

12 Import price index Haver MoM % change

13 Industrial production index ALFRED MoM % change

14 Inventories: Total business ALFRED MoM % change

15 ISM mfg.: PMI composite index Haver Index

16 ISM mfg.: Prices index Haver Index

17 ISM mfg.: Employment index Haver Index

18 ISM nonmanufacturing: NMI composite index Haver Index

19 JOLTS: Job openings: total Haver Level change (thousands)

20 Manufacturers new orders: durable goods ALFRED MoM % change

21 Manufacturing payrolls Haver Level change (thousands)

22 Manufacturers shipments: durable goods Haver MoM % change

23 Manufacturers inventories: durable goods Haver MoM % change

24 Manufacturers’ unfilled orders: total manufacturing Haver MoM % change

25 New single family houses sold ALFRED MoM % change

26 Nonfarm business sector: unit labor cost ALFRED QoQ % change (annual rate)

27 PCE less food and energy: chain price index ALFRED MoM % change

28 PCE: chain price index ALFRED MoM % change

29 Philly Fed Mfg. business outlook: current activity Haver Index

30 Retail sales and food services ALFRED MoM % change

31 Real personal consumption expenditures ALFRED MoM % change

32 Real gross domestic income Haver QoQ % change (annual rate)

33 Real disposable personal income ALFRED MoM % change

34 Value of construction put in place Haver MoM % change

Table A.5: Data description table (macro data)– The Series column gives a time-series name, which is given in the second column

Source. The column Units denotes the data transformation applied to a time-series.
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Series Source Units

1 BAA less AAA corporate bond spread FRED Level

2 BAA less 10-year bond spread FRED Level

3 S&500 FRED Log-returns %

4 TED spread FRED Level

5 10-year less 3-month bond spread FRED Level

6 VIX FRED Level

7 Economic policy uncertainty index (EPUI) FRED Index

8 Equity market-related economic uncertainty index (EMEUI) FRED Index

Table A.6: Data description table (financial and uncertainty series) – The Series column gives a time-series name, which is given

in the second column Source. The column Units denotes the data transformation applied to a time-series.
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Group Series

1 Banks Bank loans

2 Banks Credit ratings

3 Banks Financial crisis

4 Banks Mortgages

5 Banks Nonperforming loans

6 Banks Savings & loans

7 Economic Growth Economic growth

8 Economic Growth European sovereign debt

9 Economic Growth Federal Reserve

10 Economic Growth Macroeconomic data

11 Economic Growth Optimism

12 Economic Growth Product prices

13 Economic Growth Recession

14 Economic Growth Record high

15 Financial Markets Bear/bull market

16 Financial Markets Bond yields

17 Financial Markets Commodities

18 Financial Markets Currencies/metals

19 Financial Markets Exchanges/composites

20 Financial Markets International exchanges

21 Financial Markets IPOs

22 Financial Markets Options/VIX

23 Financial Markets Share payouts

24 Financial Markets Short sales

25 Financial Markets Small caps

26 Financial Markets Trading activity

27 Financial Markets Treasury bonds

28 Government Environment

29 Government National security

30 Government Political contributions

31 Government Private/public sector

32 Government Regulation

33 Government Safety administrations

34 Government State politics

35 Government Utilities

36 Government Watchdogs

37 Industry Cable

38 Industry Casinos

39 Industry Chemicals/paper

40 Industry Competition

41 Industry Couriers

42 Industry Credit cards

43 Industry Fast food

44 Industry Foods/consumer goods

45 Industry Insurance

46 Industry Luxury/beverages

47 Industry Revenue growth

48 Industry Small business

49 Industry Soft drinks

50 Industry Subsidiaries

51 Industry Tobacco

52 Industry Venture capital

53 International Affairs Canada/South Africa

54 International Affairs China

55 International Affairs France/Italy

56 International Affairs Germany

57 International Affairs Japan

58 International Affairs Latin America

59 International Affairs Russia

60 International Affairs Southeast Asia

61 International Affairs Trade agreements

62 International Affairs UK

Online Appendix - 17



63 Labor/income Executive pay

64 Labor/income Fees

65 Labor/income Government budgets

66 Labor/income Health insurance

67 Labor/income Job cuts

68 Labor/income Pensions

69 Labor/income Taxes

70 Labor/income Unions

71 Oil & Mining Agriculture

72 Oil & Mining Machinery

73 Oil & Mining Mining

74 Oil & Mining Oil drilling

75 Oil & Mining Oil market

76 Oil & Mining Steel

Table A.7: Data description table (textual data) – The Group column is a group name of individual textual analysis series which

appear in the column Series. Data is taken in levels.
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A.5.1 Additional results

Rel-RMSE DM-stat-1 DM-stat-2

2-month horizon

sg-LASSO-MIDAS 0.737 -2.500

NY Fed 0.946 2.500

1-month horizon

sg-LASSO-MIDAS 0.726 -0.804

NY Fed 0.805 0.804

End-of-quarter

sg-LASSO-MIDAS 0.704 -0.048

NY Fed 0.708 0.048

Table A.8: Nowcast comparisons for models with macro data including series with short samples – Nowcast

horizons are 2- and 1-month ahead, as well as the end of the quarter. Column Rel-RMSE reports root mean squared

forecasts error relative to the AR(1) model. Column DM-stat-1 reports Diebold and Mariano (1995) test statistic of

all models relative to NY Fed nowcasts, while column DM-stat-2 reports the Diebold Mariano test statistic relative

to sg-LASSO-MIDAS model. Out-of-sample period: 2002 Q1 to 2017 Q2.

Online Appendix - 19



Rel-RMSE DM-stat-1 DM-stat-2

2-month horizon

sg-LASSO-MIDAS 0.794 -1.780

NY Fed 0.946 1.780

1-month horizon

sg-LASSO-MIDAS 0.693 -1.161

NY Fed 0.805 1.161

End-of-quarter

sg-LASSO-MIDAS 0.691 -0.221

NY Fed 0.707 0.221

Table A.9: Nowcast comparison table (excluding financial data in Table A.6) – Nowcast horizons are 2- and

1-month ahead, as well as the end of the quarter. Column Rel-RMSE reports root mean squared forecasts error

relative to the AR(1) model. Column DM-stat-1 reports Diebold and Mariano (1995) test statistic of all models

relative to the NY FED nowcast. Out-of-sample period: 2002 Q1 to 2017 Q2.
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