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Abstract

We review the recent methodological advances in machine learning for eco-
nomic forecasting and nowcasting. We consider the high-dimensional regular-
ized regressions for individual time series and panel data, paying special at-
tention to how time series lags and cross-validation should be used in practice.
We also discuss how to do inference and tests such as the Granger causality
test with high-dimensional regularized regressions. Lastly, we review the prac-
tical implementation of tree-based methods (boosting and random forests) and
(deep) neural networks. We refer the reader to the Python and R libraries that
can be used to compute the reviewed methods whenever possible.
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1 Introduction

Economic forecasting has traditionally relied on models estimated with the maximum
likelihood (MLE) approach. The limitations of the MLE are well known as eloquently
described in Bradley and Trevor (2021):

“Arguably the 20th century’s most influential piece of applied mathematics, maximum like-

lihood continues to be a prime method of choice in the statistician’s toolkit. Roughly speaking,

maximum likelihood provides nearly unbiased estimates of nearly minimum variance, and does so

in an automatic way. That being said, maximum likelihood estimation has shown itself to be an in-

adequate and dangerous tool in many 21st century applications. Again speaking roughly, unbiased

can be an unavoidable luxury when there are hundreds or thousands of parameters to estimate at

the same time.”

James and Stein (1961) made this point dramatically in a much simpler setting
showing that the maximum likelihood estimator is inadmissible when the dimension is
greater or equal to 3. In particular, biased shrinkage estimators and more generally
regularized estimators outperform the conventional unbiased maximum likelihood
estimator. The machine learning (ML) methods developed over roughly the past
60 years have revolutionized decision-making across various fields. At its core, ML
involves formulating a loss or cost function for forecasting rules. In this context, a
forecasting rule, denoted as f(xt), predicts the value of a target variable, yt+h, at
a future horizon, h, based on information available at time t. The loss function,
ℓ(yt+h, f(xt)), quantifies the error incurred by the forecasted value compared to the
actual outcome.

The central goal is to approximate the optimal decision rule, f ∗, which minimizes
the expected loss, E[ℓ(yt+h, f(xt))]. This approach has its roots in the decision the-
ory, see Wald (1949), and is adopted in statistical learning, see Vapnik (1999), and
economic forecasting, see Granger and Pesaran (2000). For instance, when employ-
ing a quadratic loss function, ℓ(yt+h, f(xt)) = (yt+h − f(xt))

2, the optimal decision
rule corresponds to the (non-linear) regression, f ∗(xt) = E[yt+h|xt] with respect to
f(xt).

1

The data-driven decision rules lead to the bias-variance trade-off in the forecast-
ing performance. Flexible nonparametric techniques offer a solution by reducing
bias at the cost of increasing variance, leading to potential overfitting issues. At
the same time, regularization and dimensionality reduction introduce some bias to
reduce the variance. Machine learning offers a wide array of nonparametric and
high-dimensional tools, enabling flexible and accurate approximations of the optimal

1Equivalently, we could consider the regression model, yt+h = f∗(xt)+εt+h with E[εt+h|xt] = 0.
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decision rules, adapting to the bias-variance trade-off, and optimizing the forecasting
performance.

Many of the widely used ML tools relate to known and well-established statistical
methods. For example, deep learning can be understood as a regression model with
nonlinearities generated by a multi-layer neural network; see Hornik, Stinchcombe,
and White (1990) and Chen (2007).2 Random forests and gradient boosting which
can be understood as a new generation of regression and classification trees; see
Breiman, Friedman, Stone, and Olshen (1984). The penalized regression can be
traced back to the idea of shrinkage, see James and Stein (1961), regularization of
ill-posed inverse problems, see Tikhonov (1963), and the ridge regression, see Hoerl
and Kennard (1970a,b).3

While the development of ML methods has a long history, the remarkable recent
success and wide adoption are mostly due to the increasing availability of new high-
dimensional data, cheap computational power, and scalable statistical packages.4

Economists also rely increasingly on high-dimensional datasets such as textual and
image data, credit card spending, or Google Trends. Consequently, ML methods are
gaining appreciation and are becoming ubiquitous in economics and finance.

In this chapter, we aim to review some of the recent developments in the machine
learning literature for economic forecasting, focusing on the appropriate treatment
of time series lags, panel and tensor data, nowcasting, high-dimensional Granger
causality tests, time series cross-validations, and classification. We also review the
nonlinear tree-based methods and (deep) neural networks. Hence, this chapter is
focused on topics of interest to forecasters and we refer the reader to other existing
surveys and introductions to the ML methods for a more general review of the
subject.5

2Various forms of neural networks have achieved a remarkable performance recently with per-
ceptual data like text, images, speech, or videos; see also Farrell, Liang, and Misra (2021) and Gu,
Kelly, and Xiu (2020) for applications with tabular data.

3See also Carrasco, Florens, and Renault (2007) and Babii and Florens (2017).
4One may quote the remarkable success of ML methods in the prediction contests with substan-

tial monetary prizes, such as Kaggle or Makridakis Competitions; see Makridakis, Spiliotis, and
Assimakopoulos (2020, 2022).

5See James, Witten, Hastie, and Tibshirani (2013), Hastie, Tibshirani, Friedman, and Friedman
(2009), and Breiman (2001b) for general introductions. See also Mullainathan and Spiess (2017),
Athey and Imbens (2019), and Varian (2014) for economics surveys. Lastly, see Coulombe, Leroux,
Stevanovic, and Surprenant (2022) and Masini, Medeiros, and Mendes (2023) for time series reviews.
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2 High-Dimensional Linear Projections

2.1 Time Series Forecasting

The empirical analysis of time series data entails several notable challenges. Firstly,
in a data-rich time series environment the objective is often to forecast a low-
frequency variable (e.g. quarterly GDP growth or inflation) while the information
set may contain predictors measured at a higher frequency (e.g. monthly or daily).
Additionally, certain economic effects tend to persist over time. This brings us to
the question of how to combine the high (or same) frequency time series lags in
regression equations.

Secondly, the prevalence of high-dimensional datasets further compounds the
complexity. In addition to traditional macroeconomic and financial indicators, mod-
ern empirical research increasingly relies on non-standard data sources like textual
data, credit card spending records, traffic and satellite data, among others. Conse-
quently, the task of selecting an accurate forecasting model from this vast array of
predictors becomes a significant challenge. Shrinkage methods like ridge regression
or LASSO effectively mitigate multicollinearity and overfitting issues, making them
particularly suited for handling large predictor sets.

To address the aforementioned challenges, Babii, Ghysels, and Striaukas (2022)
introduce high-dimensional regularized projections for time series data inspired by
the mixed-frequency data sampling, i.e. MIDAS regression or the distributed lag
econometric literature (see Ghysels, Santa-Clara, and Valkanov (2006)). Let (yt)t∈[T ]

be a target time series, e.g. quarterly GDP growth or inflation (where we put [T ] =
{1, 2, . . . , T} for a positive integer T ). The covariates consist of K time-varying
predictors measured potentially at higher frequencies, e.g. quarterly, monthly, or
daily, {

xt−j/nH
k ,k : , t ∈ [T ], j = 0, . . . , nL

kn
H
k − 1, k ∈ [K]

}
,

where nH
k is the number of high-frequency observations for the kth covariate in a

low-frequency time t, and nL
k is the number of low-frequency periods used as lags.

For instance, nL
k = 1 corresponds to a single quarter of high-frequency lags used as

covariates and nH
k = 3 corresponds to 3 months of data available per quarter.

The mixed frequency time series regression equation for forecasting a low -frequency
target yt+h at a horizon h ≥ 1 is

yt+h = α +
J∑

j=0

ρjyt−j +
K∑
k=1

ψ(L1/nH
k ; βk)xt,k + ut+h,
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where we use the lag polynomial notation ψ(L1/nH
k ; βk)xt,k =

1
mk

∑mk−1
j=0 βj,kxt−j/nH

k ,k,

where mk = nL
kn

H
k is the total number of all lags. The resulting projection model

has a large number of parameters and is prone to overfitting.

Babii, Ghysels, and Striaukas (2022) propose to parameterize the lag coeffi-
cients using a MIDAS weighting function ω described by a low-dimensional param-

eter βk ∈ RL ψ(L1/nH
k ; βk)xt,k = 1

mk

∑mk−1
j=0 ω

(
j

nH
k
; βk

)
xt−j/nk,k, where ω(s; βk) =∑L−1

l=0 βl,kwl(s) and (wl)l≥0 is a collection of approximating functions, called dictio-
nary. The default choice for the dictionary could be a set of Legendre polynomials
shifted to [0, nL

k ] interval.
6 Given this choice, the forecasting equation is mapped

to the linear regression model, where covariates are weighted by a matrix generated
from the weight function. Importantly, the time series lags define the sparse-group
structure, where a group of coefficients βk ∈ RL corresponding to the kth covariate,
is approximately sparse.

Next, Babii, Ghysels, and Striaukas (2022) propose to use the sparse-group
LASSO (sg-LASSO) estimator of Simon, Friedman, Hastie, and Tibshirani (2013),
namely:

min
b∈Rp

∥y −Xb∥2T + λΩ(b),

where ∥.∥T = |.|2/
√
T is the empirical norm, λ ≥ 0 is a tuning parameter, and Ω is

the sg-LASSO regularizing functional:

Ω(b) = γ|b|1 + (1− γ)∥b∥2,1,

is a penalty function.7 The sg-LASSO penalty is a linear combination of the LASSO
(ℓ1 norm), see Tibshirani (1996), and the group LASSO, see Yuan and Lin (2006)
(∥β∥2,1 =

∑K
k=1 |βk|2). The group LASSO penalty selects covariates while the stan-

dard LASSO penalty selects the shape of the MIDAS weight function. The sparse-
group LASSO estimator is an example of a shrinkage estimator, where the coefficients
are shrunken towards zero in the norm Ω. The shrinkage reduces the variance at costs
of introducing the bias and the appropriate choice of the tuning parameter λ allows
us to achieve the desired combinations of the bias-variance trade-off.

The estimator nests the standard LASSO (γ = 1) and the group LASSO (γ = 0)
as special cases. Babii, Ghysels, and Striaukas (2022) establish the non-asymptotic
theoretical properties of the estimator for heavy-tailed τ -mixing processes which are

6Other possibilities include splines, trigonometric polynomials, or wavelets.
7We use |z|q = (

∑p
i=1 z

q
i )

1/q to denote the ℓq norm of z ∈ Rp.
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general enough for macroeconomic and financial time series.8 The properties rely on
the Fuk-Nagaev concentration inequality obtained in Babii, Ghysels, and Striaukas
(2024).

The literature on the applications of penalized regressions to time series data
is vast and we can only mention some of the interesting developments. Mogliani
and Simoni (2021) propose a Bayesian approach to the high-dimensional MIDAS
regressions based on the group LASSO. They find good forecasting performance in
forecasting US economic activity. Beyhum and Striaukas (2023) extend the work
of Babii, Ghysels, and Striaukas (2022) proposing a factor augmented sg-LASSO-
MIDAS regression. They find that factor augmentation yields improvements in now-
cast accuracy during the COVID period. Hecq, Ternes, and Wilms (2023) consider
the extension of the sparse-group LASSO, called the hierarchical LASSO, where the
groups can be arranged on a multi-level tree.

Some of the penalized methods have been used for a long time. For example, the
HP filter is essentially a penalized regression; see Mei, Phillips, and Shi (2022) and
Phillips and Shi (2021) for recent contributions. Chen and Maung (2023) propose a
nonparametric estimator of time-varying forecast combination weights and develop
corresponding asymptotic theory. They apply the LASSO-type estimator for kernel
regression to estimate the forecast combination weights. Application to inflation and
unemployment shows the benefits of the method compared to alternative techniques
used in forecast combination literature such as Complete Subset Regressions pro-
posed by Elliott, Gargano, and Timmermann (2013), partially egalitarian LASSO
approach of Diebold and Shin (2019).

There are also a number of applications of penalized regressions to asset pric-
ing; see Gu, Kelly, and Xiu (2020), Freyberger, Neuhierl, and Weber (2020), Feng,
Giglio, and Xiu (2020), Bryzgalova (2015), and the review paper Giglio, Kelly, and
Xiu (2022). Li, Plagborg-Møller, and Wolf (2022) conduct a comprehensive simula-
tion study and conclude that the shrinkage and penalization can be attractive when
estimating structural impulse response functions.

On the theory side, Kock (2016) and Medeiros and Mendes (2016, 2017) establish
the model selection consistency and derive convergence rates for the adaptive LASSO
with time series data. Kock and Callot (2015) and Masini, Medeiros, and Mendes
(2022) derive convergence rates for high-dimensional VAR models; see also Wong,
Li, and Tewari (2020), Chernozhukov, Härdle, Huang, and Wang (2021), Adamek,
Smeekes, and Wilms (2023) for convergence rates of LASSO under β-mixing, physical

8This class of processes is large enough to cover the α-mixing processes as well as infinite linear
transformations of β-mixing processes.
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dependence, and near-epoch dependence.

2.2 Panel Data

It is often the case that the objective is to forecast or nowcast a large number of
long time series of size T , e.g. N regional growth indices or price/earnings ratios for
N firms observed at T quarters. In the latter case, the predictors cover the firm-
specific accounting and textual data as well as the aggregate macroeconomic and
financial indicators. While the time series methods described in the previous section
can be applied series-by-series, this approach ignores the cross-sectional variation in
the panel.

Babii, Ball, Ghysels, and Striaukas (2023, 2024) focus on the high-dimensional
panel data regressions

yi,t+h = αi +
K∑
k=1

ψ(L1/nH
k ; βk)xi,t,k + ui,t|τ , i ∈ [N ], t ∈ [T ]

where the index i denotes the cross-sectional dimension, e.g. a region or a firm. The
corresponding regularized fixed effects estimator solves

min
(a,b)∈RN+p

∥y −Ba−Xb∥2NT + 2λΩ(b),

where B = IN ⊗ ι and ι ∈ RT is an “all ones” vector and the panel data observations
are stacked in (y,X). An attractive feature of the estimator is that it captures
the heterogeneity of time series intercepts αi. The disadvantage is that estimating
N additional parameters leads to the precision loss.9 In some cases, these costs
outweigh the benefits and simpler pooled panel data regressions

min
(a,b)∈R1+p

∥y − ιa−Xb∥2NT + 2λΩ(b),

where the intercepts are α1 = · · · = αN = a.

Some of the recent empirical work using machine learning, panel data, and now-
casting includes Van Binsbergen, Han, and Lopez-Lira (2023) (firm earnings), Ghy-
sels, Grigoris, and Özkan (2022) (government earnings and expenditures), Fosten
and Greenaway-McGrevy (2022) (state-level GDP growth). On the methodology
side, Carrasco and Rossi (2016) consider general regularization based on spectral

9Babii, Ball, Ghysels, and Striaukas (2023) quantify the price of estimating additional parameters
depending on how persistent and fat-tailed the data are.
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decomposition covering the ridge regression as a special case. Carvalho, Masini, and
Medeiros (2018) apply the LASSO to predict controls for causal inference, generaliz-
ing the method of synthetic controls of Abadie, Diamond, and Hainmueller (2010).10

2.3 Nowcasting, real-time data flow, and textual data

The term nowcasting is a contraction of now and forecasting. It is defined as the
prediction of the present, the very near future, or the very recent past, using the
real-time data flow reflecting the evolving economic conditions and data revisions;
see Bańbura, Giannone, Modugno, and Reichlin (2013) and Giannone, Reichlin, and
Small (2008). Nowcasting a target variable yt at low-frequency (e.g. quarterly) often
involves vintage data, defined as a sequence of information sets, denoted

Itr =
{
xk,⌈tr⌉−j/nH

k |r : k ∈ [Kr], j = j
r,k
, . . . , nH

k n
L
k − 1

}
where t1 ≤ t2 ≤ · · · ≤ tR are times when the information set is updated.11 The
updates at a given time tr appear for two reasons: 1) new data is released ; 2) old
data is revised. The revisions are especially common for the macroeconomic data
and it is crucial to forecast using the vintage data available at a particular point
of time to avoid the look ahead biases (see Ghysels, Horan, and Moench (2018) for
further discussion).

Babii, Ghysels, and Striaukas (2022) consider the problem of nowcasting the quar-
terly US GDP growth using higher frequency macroeconomic and financial. They
find that the machine learning nowcasts are either superior or at par with those
posted by the New York Federal Reserve Bank. Additional gains are achieved us-
ing the data coming from the textual analysis of economic news; see Bybee, Kelly,
Manela, and Xiu (2020). Ellingsen, Larsen, and Thorsrud (2022) also report that
the textual news data add value to the traditionally used FRED-MD data. In a
related work, Babii, Ball, Ghysels, and Striaukas (2023, 2024) consider the problem
of nowcasting the price-earnings ratios with firm-specific accounting information as
well as the aggregate macroeconomic, financial, and textual news information and
report. They find that the machine learning panel data models perform favorably,
cf. Ball and Ghysels (2018).

The high-dimensional MIDAS regression models are implemented in the package
midasml available on CRAN. In the package, there are multiple functionalities,

10The literature on using LASSO to predict the counterfactuals is fast; see Belloni, Chernozhukov,
and Hansen (2014), Chernozhukov, Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins
(2018), and references therein.

11For a real number a, we use ⌈a⌉ to denote the smallest integer larger than a.
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including functions that deal with the high frequency lags construction, estimation
of time series and panel data regression models, tuning parameter selection methods
such as (time-series) cross-validation and information criteria, and precision matrix
estimation used to compute the debiased estimates for conducting Granger causality
test (see the subsequent section).

Borup, Rapach, and Schütte (2023) study the weekly unemployment insurance
initial claims using unrestricted MIDAS specification utilizing Google trends data;
see also Ferrara and Simoni (2022). They find that the ensemble (or combinations) of
linear and nonlinear ML methods perform the best and that the daily Google Trends
data were particularly relevant during the COVID-19 crisis. Jardet and Meunier
(2022) also find that nowcasting performance improves during crises period. On the
other hand, Jardet and Meunier (2022) find that nowcasting performance improves
during crises period when weekly data is used in prediction models.

Barbaglia, Manzan, and Tosetti (2023) develop a Fine-Grained Aspect-based Sen-
timent analysis method to compute sentiments from news articles about the state
of the economy. They find that economic news sentiments extracted from a large
pool of news articles track economic cycles and help accurately nowcast economic
activity. Lastly, Cimadomo, Giannone, Lenza, Monti, and Sokol (2022) consider
large Bayesian Vector Autoregressive (BVAR) models to nowcast the US economic
activity.

2.4 Granger Causality Tests

The time series models are often misspecified. In this case, the regression has only a
projection interpretation and the regression errors are serially correlated. In addition
to that the LASSO estimator has a complicated sampling distribution due to a
significant shrinkage bias. Let β̂G = (β̂j)j∈G be a subset of projection coefficients
fitted with the LASSO (or sg-LASSO) indexed by G ⊂ [p], where p is the number
of regressors. Babii, Ghysels, and Striaukas (2024) show that for the heavy-tailed
τ -mixing time series, we have

√
T (β̂G +BG − βG)

d−→ N(0,ΞG),

where BG is a bias correction term, ΞG = limT→∞ Var
(

1√
T

∑T
t=1 utΘGxt

)
is the

long-run variance, and Θ is the precision matrix.12

12See also Chernozhukov, Härdle, Huang, and Wang (2021) for the physically dependent processes
and Adamek, Smeekes, and Wilms (2023) for the near-epoch dependent processes.
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The long-run variance can be estimated using the standard HAC estimator, see
Newey and West (1987) and Andrews (1991)

Ξ̂G ≜
∑
|k|<T

K

(
k

MT

)
Γ̂k,

where K : R → [−1, 1] is the kernel weight function, MT is the lag truncation pa-

rameter, and Γ̂k = Θ̂G

(
1
T

∑T−k
t=1 ûtût+kxtx

⊤
t+k

)
Θ̂⊤

G, are the autocovariances for fitted

residuals ût. Babii, Ghysels, and Striaukas (2024) characterize the MSE convergence
rate of the HAC estimator based on the sg-LASSO residuals. Their result leads to
the following “rule of thumb” choice of the bandwidth parameter

MT =

1.3
(

T
log p

) 1
1+ς

, sub-Gaussian data

1.3
(

T 2−2/q

p2/q

) 1
1+ς

, heavy-tailed data,

where ς = 2 for the Quadratic spectral and Parzen kernels, and q > 2 is the number
of finite moments in the data.

For forecasting problems, we can use these results to test Granger causality which
is a formal statistical way to evaluate whether a particular time series marginally
adds to the projection of a target variable on a set of predictors. Interestingly, in his
original paper, Granger (1969a) defined causality in terms of high-dimensional time
series data which he referred to as “all the information available in the universe at
time t”. To test whether a series (wt)t∈Z Granger causes another series (yt)t∈Z at a
horizon h, consider

yt+h = c+
∑
j≥1

zt,jγj +w⊤
t−1α + ut+h,

where (zt,j)j≥1 is a high-dimensional set of controls α ∈ RK and wt−1 ∈ RK is a
vector lags of (wt)t∈Z.

Babii, Ghysels, and Striaukas (2024) show that under the null hypothesis, the
bias-corrected Wald statistics follows a chi-squared distribution

WT := T [(α̂ + A− α)]⊤ Ξ̂−1
α [(α̂ + A− α)]

d−→ χ2
K ,

where A is the bias correction term and Ξ̂α is the HAC estimator. The practical
implementation of the test is as follows:

1. Estimate α ∈ RK using the LASSO (or sg-LASSO) and compute the HAC
estimator using the LASSO residuals.
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2. Compute the bias-corrected Wald statistics.

3. Reject the Granger non-causality ifWT > q1−α, where q1−α is the 1−α quantile
of χ2

K and do not reject otherwise.

Alternatively, one could use a likelihood ratio test or an LM test; see Hecq,
Margaritella, and Smeekes (2023) for the latter.

As an illustrative example, we provide a stylized Monte Carlo example simulating
a model

yt+1 = ztγ0 +w⊤
t−1α0 + ut+1,

where γ0 ∈ R and α0 ∈ Rp. The time series are generated as (zt,w
⊤
t−1) ∼ AR(1)

and ut+1 ∼ AR(1) with AR coefficient set to 0.6 in all cases. We use a Toeplitz
covariance with a coefficient 0.6 for the covariance matrix of (zt,w

⊤
t−1) to introduce

the dependence among covariates. The regression coefficients are γ0 = 1 and the first
four entries of α0 are equal to 1 while the remaining entries are zero. We plot the
squared ratio of bias/standard error, where the standard errors are computed with
the HAC estimator as in Babii, Ghysels, and Striaukas (2024). We report the values
for the γ0 where i) estimated using debiased LASSO regressing yt+1 on zt and wt

(LASSO) ii) γ̂ is estimated with OLS by regressing yt+1 on zt (OLS-low) and iii) γ̂
is estimated with OLS by regressing yt+1 on zt and wt (OLS-high). We increase the
dimension p = {20, 40, . . . , 100}. Results are plotted in Figure 1.

The plot reveals that the LASSO performs well regardless of the number of con-
trols. On the one hand, the OLS without controls has a larger bias compared to
the LASSO due to the exclusion of relevant controls. Including all controls is only
feasible for low to moderate dimensions of the control vector. For a larger number
of controls the errors grow dramatically.

2.5 Time Series Cross-Validation

The practical implementation of ML methods requires specifying one or several tun-
ing parameters. For i.i.d. data, a common practice is to rely on the K-fold cross-
validation. which may or may not be appropriate for time series data. Bergmeir,
Hyndman, and Koo (2018) show that for autoregressive models with i.i.d. errors the
standard K-fold cross-validation remains valid. However, with correlated errors – for
example, when the regression has only projection interpretation due to misspecifica-
tion – the standard cross-validation fails due to the correlation between the training
and the test samples.
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Figure 1: The squared ratio of bias/standard error for LASSO, OLS without high-
dimensional controls (OLS-low) and OLS with high-dimensional controls (OLS-high).

One could rely on the following leave-one-out cross-validation with a gap proce-
dure that decorrelates the training and the test samples, see also Chu and Marron
(1991). Let f̂λ(xt) be a prediction rule of a machine learning model with tuning
parameters λ = (λ1, . . . , λM).13. For some l ∈ N and each t = 1, . . . , T :

1. If t > l+1 and t < T− l, use observations It,l = {1, . . . , t− l−1, t+ l+1, . . . , T}
to fit the machine prediction, denoted f̂λ,−t,l(xt). For t = 1, . . . , l + 1, use
It,l = {t+ l + 1, . . . , T} as the training sample. Similarly, for t = T − l, . . . , T ,
use It,l = {1, . . . , T − l − 1} as the training sample.

2. Use the left-out observations to test the model

CV (λ) =
1

T

T∑
t=1

ℓ(yt − f̂λ,−t,l(xt)),

where ℓ is the loss function, e.g. the MSE or quadratic loss, ℓ(u) = u2.

3. Minimize CV (λ) with respect to λ.

13For example, sg-LASSO corresponds to the linear prediction rule f̂λ(xt) = x⊤
t β̂λ with M = 2
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Figure 2: Time series cross-validation scheme with l = 3

For l = 0 the procedure is the usual leave-one-out cross-validation while for l ≥ 1,
there is a gap of l observations separating the test and the training samples. Since
the procedure is computationally demanding, Babii, Ghysels, and Striaukas (2024)
draw randomly a sub-sample I ⊂ [T ] of size K and minimize

CVK(λ) =
1

K

∑
t∈I

ℓ(yt − f̂λ,−t,l(xt))

instead. Figure 2 illustrates it for a gap of l = 3 observations. The red training data
are separated from the blue test data with a gap of 3 green left-out observations on
each side.

3 Nonlinear Machine Learning Methods

The regularized linear projection methods discussed in the previous section can be
viewed as linear approximations, x⊤t βh, to the potentially nonlinear conditional mean
function f ∗

h(xt) = E[yt+h|xt], or more generally to the optimal decision rule f ∗
h for the

loss function ℓ(yt+h, fh(xt)). Nonlinear machine learning methods, such as regression
trees, random forests, boosting, and (deep) neural networks, aim to achieve more
accurate approximations to f ∗

h capturing nonlinearities and higher-order interactions
between covariates.

It is essential to note that the distinction between linear and nonlinear meth-
ods is not rigid, as one can always expand the predictor space with quadratic, in-
teraction terms, and higher-order counterparts to apply techniques like LASSO or
other shrinkage methods.14 From a practical standpoint, the flexibility of nonlinear

14This is justified since functions have potentially infinite series expansions in various bases, such
as orthogonal polynomials, splines, or wavelets.
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methods comes at the cost of fitting a larger number of parameters, which can be
challenging in low signal-to-noise environments where evidence for nonlinearities is
often weak. In this section, we review the tree-based methods and (deep) neural
networks. Since the time series lags and the cross-validation can be used in the same
way as for linear methods, in what follows we will skip these topics.

3.1 Tree-based Methods

3.1.1 Regression and Classification Trees

Regression and classification trees are sequential methods for building forecasting
models. The predictor space X ⊂ Rp is greedily decomposed into a partition X =
R1 ∪ R2 ∪ · · · ∪ RJ with Rj ∩ Rk = ∅,∀j ̸= k. The fitted regression function is
piecewise constant on the partition elements:

f̂(x) =
J∑

j=1

ĉj1Rj
(x),

where ĉj is the sample mean of all yt+h such that xt ∈ Rj and we put 1Rj
(x) = 1 if

x ∈ Rj and 1Rj
(x) = 0 otherwise.15 The partition usually consists of hyperrectangles

with sides parallel to coordinate axes. The process unfolds sequentially by selecting
a predictor k = 1, . . . , p and a split location s ∈ R that yields the largest reduction
in mean-squared error. It is easiest to understand the process graphically.

Consider a very simple example of predicting inflation with an unemployment
rate. Figure 3, panel (a) shows a tree with five partition elements (called leaves)
and four splits at various levels of the unemployment rate. The partition is obtained
by splitting the space of unemployment at 3.65 first, then the interval with values
≥ 3.65 is splitted at 9.35 and the process continues with 2 more splits. The number
at the bottom are the predicted values obtained as sample means of inflation in each
leave. Panel (a) displays the corresponding piecewise constant regression function.

The regression tree might not be the most captivating tool when only one predic-
tor is available; more visually appealing estimates can be derived from nonparametric
smoothing techniques. However, its greedy nature and ease of visualization become
advantageous with larger predictor sets. Each split location is determined by the
most influential predictor, yielding the greatest model fit improvement. Figure 3,
panel (b), displays a tree with splits along two predictors (unemployment rate and

15Piecewise linear or polynomial functions can also be considered; see Friedberg, Tibshirani,
Athey, and Wager (2020).
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industrial production), and panel (d) displays the resulting partition with predicted
inflation values. It is generally recommended to grow deeper trees with more splits
and then prune them using an appropriate cross-validation procedure.

Classification trees share this methodology, with the distinction that the outcome
is a discrete variable. These trees employ the so-called Gini or cross-entropy measures
instead of mean-squared error to guide the splitting process.

The key tuning parameter for regression and classification trees is the depth of
the tree or the optimal level of pruning, reflecting the total number of leaves. Deeper
trees fit the data with lower bias and higher variance, while shallow trees have more
observations in each leave, reducing the variance at the cost of potentially missing
important nonlinearities.

3.1.2 Random Forests

While regression trees are interpretable, a single tree might not be the most powerful
predictive model. Random forests enhance the performance by bootstrapping the
original data B times and fitting a regression tree, denoted as f̂b, on each bootstrap
sample. The final regression estimate is obtained through the sample average:

f̂(x) =
1

B

B∑
b=1

f̂b(x). (1)

This technique, known as bagging (bootstrap aggregation), aims to reduce the vari-
ance associated with a single tree. A formal analysis can be found in Friedman
and Hall (2007), with an early economic application discussed in Inoue and Kilian
(2008). It is essential to exercise caution when bootstrapping time series data, as
naive sampling with replacements can disrupt time-series dependence. One remedy
is to sample data blocks (yt+h, xt)

T
t=1; see Politis and Romano (1994) for details.

Random forests can be conceptualized as a form of bagging, where, at each split,
only a subset of randomly selected m predictors is considered; see Breiman (2001a).
A common rule-of-thumb is to set m as the integer part of

√
p. The rationale behind

this choice lies in the lower variance of the sample mean in equation (1) compared
to the variance of a single tree f̂b(x), provided that the trees are not correlated.
However, if there is a dominant predictor, all bagged trees may make their first split
along this predictor. Randomly selecting a subset of predictors for each split helps
decorrelate the trees.

The asymptotic theory of regression trees and random forests is not as well-
established as that for nonparametric kernel or series estimators, even in the i.i.d.
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Figure 3: Fitted regression trees for the year-on-year inflation using unemployment
rate as a predictor (Figure 3a-3c) and unemployment rate with industrial production
as predictor (Figure 3b-3d). Sample period January, 1980, to November, 2023.

case. Key contributions are found in Cattaneo, Chandak, and Klusowski (2022), Chi,
Vossler, Fan, and Lv (2022), Syrgkanis and Zampetakis (2020), Athey and Imbens
(2019), Scornet, Biau, and Vert (2015), and Nobel (1996).
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3.1.3 Boosting

Boosting progressively constructs a forecasting model by iteratively refining the fit
using shallow regression trees to refit residuals. In the initial step, a shallow tree,
denoted as f̂1, is obtained to fit (yt+h, xt), updating residuals as û

(1)
t+h = yt+h−λf̂1(xt)

for some λ > 0. For subsequent iterations k = 2, 3, . . . , K, the next tree, f̂k, is fitted
using (û

(k−1)
t+h , xt), with residuals updated as û

(k)
t+h = û

(k−1)
t+h − λf̂k(xt). The regression

estimate is then given by:

f̂(x) =
K∑
k=1

λf̂k(x)

The critical aspect of this process is the early stopping at K which is pivotal for
managing the bias-variance trade-off. Halting too soon results in substantial bias,
while overly large choices of K lead to heightened variance. Other key tuning pa-
rameters include the tree depth and the learning rate λ. Smaller values of λ facilitate
slower learning at the expense of requiring larger iterations K to achieve a good fit.
XGBoost, a popular Python and R implementation of boosting, introduces several
additional regularizations and tuning parameters. Proper selection of these parame-
ters is crucial, and the cross-validation with appropriate time series adjustments can
be used as discussed in the previous section.

It’s worth noting that a common practice in time series analysis involves plot-
ting/regressing residuals against various covariates. Boosting automates this process
by sequentially extracting small pieces of predictive information from residuals. Ad-
ditionally, boosting can be viewed as a form of functional gradient descent with an
early stopping rule, known for its regularization effect; see Biau and Cadre (2021),
Blanchard, Lugosi, and Vayatis (2003), and Friedman (2001). While kernel and
series estimators excel on standard smoothness spaces and are impossible to out-
perform, see Stone (1982), the exceptional performance of tree-based methods in
practice remains not entirely understood. This efficacy is likely attributable to their
adaptability to sparsity and heterogeneous smoothness, aspects conventional imple-
mentations of linear nonparametric methods like kernels or splines may struggle to
achieve.

To highlight some of the applications of tree-based methods we refer to Bryz-
galova, Pelger, and Zhu (2024), Gu, Kelly, and Xiu (2020), and Rossi and Timmer-
mann (2015) who use tree-based methods in asset pricing. Medeiros, Vasconcelos,
Veiga, and Zilberman (2021), Coulombe (2024), Lahiri and Yang (2022), and Bai and
Ng (2009) use random forests and boosting for macroeconomic forecasting. Lastly,
Babii, Chen, Ghysels, and Kumar (2021) and Kleinberg, Lakkaraju, Leskovec, Lud-
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wig, and Mullainathan (2018) focus on predicting recidivism at the stage of pre-trial
detention.

3.2 Neural Networks and Deep Learning

Neural network regressions can be conceptualized as M-estimators, solving a mini-
mization problem over a sequence of approximating spaces F1 ⊂ F2 ⊂ . . .

min
f∈Fk

T∑
t=1

ℓ(yt+h, f(xt)) + λΩ(f), (2)

where ℓ represents a quadratic (or alternative) loss function and Ω is a regularizing
functional; see Chen (2007) for an early review. A single-layer neural network is
characterized as

Fk =

{
x 7→

p1∑
j=1

w1,jσ(w
⊤
0,jx+ v1,j) : θ = (v1,1, w

⊤
0,1, w1,1 . . . , v1,p1 , w

⊤
0,p1

, w⊤
1,p1

)⊤

}
,

(3)
where σ is a known nonlinear activation function and θ ∈ Rd. Popular choices
include the sigmoid function, σ(u) = 1/(1+e−u), or the rectified linear unit (ReLU),
σ(u) = max(u, 0). Solving the problem in equation (2) effectively minimizes over
θ ∈ Rd, which is known as a nonlinear least-squares in the case of quadratic loss.
The width of the network p1 serves as a crucial tuning parameter, controlling the
bias-variance trade-off. A sufficiently wide single-layer neural network with large p1
can approximate a continuous function akin to algebraic polynomials or splines; see
Hornik, Stinchcombe, and White (1990) or Mhaskar (1996).

Recent breakthroughs in computer vision and natural language processing have
propelled neural networks into the spotlight. Networks applied to text, images,
speech, and videos often feature hundreds of layers obtained recursively, a methodol-
ogy commonly referred to as deep learning. To describe a multilayer neural network,
note first that a single layer neural network in equation (2) can be shortly denoted
as x 7→ W1σv1 ◦ W0x, where Wj are pj+1 × pj matrices and σv ◦ (y1, . . . , yp)

⊤ =
(σ(y1 − v1), . . . , σ(yp − vp))

⊤ with v ∈ Rp. A neural network with L layers can be
described recursively as

Fk =
{
x 7→ WLσvL ◦WL−1σvL−1

. . .W1σv1 ◦W0x : θ = (W0,W1, . . . ,WL)
}
,

where the unknown parameters are the weight matrices (Wj)
L
j=0; see Figure 4 for an

example.
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Figure 4: Directed graph of a deep neural network with p0 = 5 covariates, and L = 4
hidden layers of width 4 neuron.

It is noteworthy that for tabular economic and financial data, the optimal per-
formance of neural networks typically occurs with 1-5 layers. To the best of our
knowledge, there is no evidence supporting the idea that very deep neural networks
outperform simpler, shallow multi-layer networks. Neural networks can be employed,
for example, via the TensorFlow Python library. Beyond considerations of depth,
width, and activation function, the practical implementation involves various tun-
ing parameters. These include the number of epochs (the times gradient descent
attempts to solve the non-convex optimization problem), the size of the subsample
used to compute the gradient, the gradient step size, among others. It is crucial to
carefully select these tuning parameters, and randomness should be controlled using
multiple seed numbers to ensure reproducibility.

On the theoretical side, while the approximating properties of deep neural net-
works as L→ ∞ resemble those of shallow networks, they sometimes exhibit better
expressive power; see Yarotsky (2017). Furthermore, neural networks can adapt
to special structures, such as linear or additive structures and manifolds; see Bach
(2017), Bartlett, Montanari, and Rakhlin (2021), and Berner, Grohs, Kutyniok, and
Petersen (2021) for recent mathematical reviews. For applications in economics, re-
fer to Xu, Wang, Jiang, and Liu (2023), Bredahl Kock and Teräsvirta (2016), and
Gu, Kelly, and Xiu (2020). Numerous fascinating topics are associated with neural
networks, including sparsity, benign overfitting (or the double descent curve), and
convolutional and recurrent neural networks. For an in-depth exploration of these
topics, we recommend the aforementioned review papers.
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4 Classification for Economists

Forecasting binary variables is a prominent problem, also known as the classification
or screening in the computer science literature; see Lahiri and Yang (2013) for a
review. The classification rules build a foundation for the automated data-driven al-
gorithm based on vast data inputs that are increasingly used for various life-changing
decisions, including job hiring, pre-trial release from jail, medical testing and treat-
ment. They are also used for various routine tasks such as loan approval, fraud
detection, or spam filtering.

Babii, Chen, Ghysels, and Kumar (2021) highlight that the downside risk and
upside gains of many economic decisions are not symmetric. The importance of
asymmetries in prediction problems arising in economics has been recognized for a
long time; see Granger (1969b), Manski and Thompson (1989), Granger and Pesaran
(2000), Elliott and Lieli (2013), and the textbook treatment in Elliott and Timmer-
mann (2016), among many others. At the same time, the standard logistic regression
and machine learning algorithm often ignore the asymmetric cost and benefit consid-
erations. Consider, for example, the problem of forecasting recession. The prediction
is f(xt) ∈ {−1, 1} (1 if recession) and outcome is yt ∈ {1,−1} (1 if recession).

prediction \ outcome Recession, yt = 1 No Recession, yt = −1
Recession, f(xt) = 1 ℓ1,1(zt) ℓ1,−1(zt)

No Recession, f(xt) = −1 ℓ−1,1(zt) ℓ−1,−1(zt)

Table 1: Classification under asymmetric losses

If the recession is falsely predicted (a false positive mistake), we suffer a loss
ℓ1,−1 while if we fail to predict the recession (a false negative mistake), we suffer a
loss ℓ−1,1. The decision maker may have preferences such that failing to predict a
recession is costlier than the false alarm of a recession, in which case ℓ−1,1 > ℓ1,−1.
Additionally, there may be some benefits for correct predictions encoded in ℓ1,1 ≤ 0
and ℓ−1,−1 ≤ 0.16 Note also that the quartet of loss function in Table 1 may be driven
by some economic factors encoded in zt.

17 Babii, Chen, Ghysels, and Kumar (2021)
show that the economic costs and benefits can be accommodated by reweighing the

16Another example of an asymmetric decision problem could be the case of a policymaker deciding
between two policies under good or bad economic conditions or a risk-loving investor deciding
between going short or long on an asset.

17Compare this with the standard binary classification (e.g. logistic regression) which optimizes
the following loss function ℓ(f, y, x) = 1{f(x) ̸= y}.
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logistic regression (or ML methods) by the asymmetries of the loss function. For
instance, in the case of the logistic regression with a LASSO penalty, it is enough to
solve

θ̂ = argmin
θ∈Rp

1

n

n∑
i=1

ω(yi, xi) log
(
1 + e−yix

⊤
i θ
)
+ λ|θ|1, (4)

where the individual likelihoods are weighted by ω(yi, xi) := yia(xi) + b(xi) with

a(x) = ℓ−1,1(x)− ℓ1,1(x) + ℓ−1,−1(x)− ℓ1,−1(x),

b(x) = ℓ−1,1(x)− ℓ1,1(x) + ℓ1,−1(x)− ℓ−1,−1(x).

The data decision rule is then f̂(xi) = 1 if x⊤i θ̂ ≥ 0 and f̂(xi) = −1 if x⊤i θ̂ < 0.
Note that the problem in Eq. (4) is a convex optimization problem that can be
easily solved using the standard optimization methods. This bypasses the need to
solve a non-convex problem using the mixed-integer optimization; see Elliott and
Lieli (2013) and Florios and Skouras (2008).18 In addition to the (high-dimensional)
logistic regression, the approach of Babii, Chen, Ghysels, and Kumar (2021) can also
be applied to suitably reweighted support vector machines (SVM), boosting, and
deep learning.19

Some recent methodological developments and applications related to classifi-
cation include Barbaglia, Manzan, and Tosetti (2023), Kitagawa, Sakaguchi, and
Tetenov (2021), and Christensen, Moon, and Schorfheide (2020), while the fairness
issues are also discussed in Rambachan, Kleinberg, Mullainathan, and Ludwig (2020)
and Viviano and Bradic (2023).

5 Tensor Factor Models

The datasets available in modern empirical applications often have a multi-dimensional
panel structure. For example, in the regional macroeconomic datasets, yi,j,t is the
macroeconomic indicator i for region j measured at time t, so the data is the 3-
dimensional panel. Another example is the network data, where yi,j,t is the outcome
for the nodes (i, j) at time t, e.g. the exchange rates for a pair of currencies (i, j).
In asset pricing, yi,j,t is the excess return of jth quantile sorted on anomaly i at time

18See also Pellatt and Sun (2013) for a PAC-Bayesian perspective.
19Most of the popular machine learning packages classification packages in Python and R conve-

niently allow to specify weights including the XGBoost, scikit-learn, and TensorFLow Python
libraries.
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t; see Lettau and Pelger (2020). Adding the international dimension, we obtain the
4-dimensional panel.

While the two-dimensional panel data are represented by matrices, the multi-
dimensional panel data lead to their higher-order counterparts, called tensors. A d-
dimensional tensor is described by enumerating all the entries along the d dimensions:
Y = {yi1,i2,...,id , 1 ≤ ij ≤ Nj, 1 ≤ j ≤ d} ; see Figure 5.

Figure 5: A scalar, 1st order, 2nd order, and 3rd order tensors

Tensor datasets are often characterized by complex dependencies between entries
ignoring which may not be appropriate. For instance, the regional macroeconomic
indicators are correlated with each other, as well as over space and time. Babii, Ghy-
sels, and Pan (2023) consider the tensor factor model to capture such dependencies.
For a tensor Y ∈ RN×J×T , the model with R latent factors is20

Y =
R∑

r=1

λr ⊗ µr ⊗ fr +U, EU = 0,

where U ∈ RN×J×T is an idiosyncratic noise tensor, fr ∈ RT are time series factors,
λr ∈ RN and µr ∈ RJ are loadings in different dimensions, and we use the tensor
product notation so that (λr ⊗ µr ⊗ fr)i,j,t = λr,iµr,jfr,t. This means that the entry
(i, j, t) in Y is modeled as

yi,j,t =
R∑

r=1

λr,iµr,jfr,t + ui,j,t.

20Note that while one could consider a three-dimensional tensor as a collection of matrices and
apply the standard factor model, this approach has significant limitations. It ignores the tensor
structure and leads to the overparametrized model compared to the tensor factor approach.
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In the asset pricing application described above, the loading λr,i would be the expo-
sure of an anomaly i to the common factor ft,r while the loading µr,j would be the
exposure of jth quantile to ft,r.

The conventional approach is to ignore the tensor factor structure fitting a model
with pooled loadings

yi,j,t =
R∑

r=1

νr,i,jfr,t + ui,j,t.

Babii, Ghysels, and Pan (2023) discuss that such an approach is not optimal as it
involves (NJ +T )×R parameters instead of (N +J +T )R parameters in the tensor
factor approach.

More generally, for a d-dimensional tensor Y ∈ RN1×···×Nd , the tensor factor
model is

Y =
R∑

r=1

σr

d⊗
j=1

mj,r +U, EU = 0,

where mj,r are the unit norm loadings/factors and σr are the scale components.

Babii, Ghysels, and Pan (2023) study the PCA estimators for the tensor factor
model based on tensor matricizations along each of its dimensions. The PCA estima-
tors have a closed-form expression in contrast to the conventionally used alternating
least-squares algorithm for tensor decomposition; see Kolda and Bader (2009). To
describe the algorithm, we need to matricize tensors which is an operation general-
izing the matrix vectorization:

Example 5.1. Let Y be a 3× 4× 2 dimensional tensor of the following two slices:

Y1 =

1 4 7 10
2 5 8 11
3 6 9 12

 Y2 =

13 16 19 22
14 17 20 23
15 18 21 24

 .
Then the mode-1, 2 and 3 matricizations of Y are respectively:

Y(1) =

1 4 7 10 13 16 19 22
2 5 8 11 14 17 20 23
3 6 9 12 15 18 21 24

 , Y(2) =


1 2 3 13 14 15
4 5 6 16 17 18
7 8 9 19 20 21
10 11 12 22 23 24

 ,
Y(3) =

[
1 2 3 4 · · · 9 10 11 12
13 14 15 16 · · · 21 22 23 24

]
This leads to the following tensor PCA algorithm:
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1. Matricize the tensor Y into matrices Y(1),Y(2), . . . ,Y(d) along each of its di-
mensions.

2. Estimate the unit norm factors and loadings as (m̂j,1, . . . , m̂j,R) via PCA in each
of the d dimensions, i.e. the first R eigenvectors of Nj ×Nj matrix Y(j)Y

⊤
(j).

3. Estimate (σ̂2
r,j)

R
r=1 as the R largest eigenvalues of Y(j)Y

⊤
(j).

To determine the number of factors in a tensor factor model, Babii, Ghysels, and
Pan (2023) consider the eigenvalue ratio test, cf. Onatski (2009). They show that
the null hypothesis that there are at most k factors, we have for every matricization
j = 1, 2, . . . , d,

Sj := max
k<r≤K

σ̂2
r,j − σ̂2

r+1,j

σ̂2
r+1,j − σ̂2

r+2,j

d−→ max
0<r≤K−k

ξr − ξr+1

ξr+1 − ξr+2

=: Z,

where (ξ1, . . . , ξK−k+2) follow the joint type-1 Tracy-Widom distribution; see Karoui
(2003). On the other hand, under the alternative hypothesis that the number of
factors is > k but ≤ K, the statistics diverges to infinity. The testing procedure is

1. Let (Zi)
m
i=1 be m independent random variables drawn from the same distri-

bution as Z. To approximate the distribution of (ξ1, ξ2, . . . ), we can use the
first eigenvalues of a symmetric Nj ×Nj Gaussian matrix matrix with entries
ζi,j ∼i.i.d. N(0, τi,j), i ≤ j, where τi,j = 1 if i < j and τi,j = 2 if i = j.

2. Compute the p-value pj = 1 − Fm(Sj) for each 1 ≤ j ≤ d, where Fm(x) =
1
m

∑m
i=1 1Zi≤z.

3. Combine the p-values from the individual matricizations as pmean = 2
d

∑d
j=1 pj;

see Vovk and Wang (2020).

The tensor PCA algorithm and the test can be computed using the TensorPCA
package.21

There also exist tensor factor models related to the Tucker decomposition that
allows for a different number of factors in different dimensions, see Chen, Yang, and
Zhang (2022) and Han, Chen, and Zhang (2022). While these models are more
general they feature a larger number of parameters and may involve non-trivial iden-
tification issues. To the best of our knowledge, there are no formal statistical tests
that can be used to decide which model is appropriate for a particular application.

21See https://github.com/junsupan/TensorPCA.
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6 Conclusions

Machine learning methods are attracting significant attention in economics and fi-
nance. The success of these methods stems from their ability to provide flexible
regularized approximations to the theoretically optimal decision rules in data-rich
environments. The empirical application of machine learning in economics and fi-
nance involves several methodological challenges. In this survey, we cover some of
the interesting recent developments that address these challenges. This is an exciting
and rapidly growing area of research and we foresee many interesting methodological
developments and applications in the future.

Lastly, we referred to the statistical packages midasml (R) and TensorPCA
(Python) that can fit the high-dimensional regressions and tensor factor models.
Many of the standard machine learning routines (LASSO, ridge, elastic net, trees,
random forests, etc) are also available in the scikit-learn Python library, though
special care should be taken to avoid pitfalls with time series data described in the
chapter.
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machine learning: Nowcasting and backcasting weekly initial claims with daily
internet search volume data,” International Journal of Forecasting, 39(3), 1122–
1144.

Bradley, E., and H. Trevor (2021): Computer age statistical inference: Algo-
rithms, evidence, and data science. Cambridge University Press.
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