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Abstract

The paper uses structured machine learning regressions for nowcasting with panel

data consisting of series sampled at different frequencies. Motivated by the problem

of predicting corporate earnings for a large cross-section of firms with macroeconomic,

financial, and news time series sampled at different frequencies, we focus on the sparse-

group LASSO regularization which can take advantage of the mixed frequency time

series panel data structures. Our empirical results show the superior performance of

our machine learning panel data regression models over analysts’ predictions, fore-

cast combinations, firm-specific time series regression models, and standard machine

learning methods.
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1 Introduction

Nowcasting is intrinsically a mixed frequency data problem as the object of interest
is a low-frequency data series — observed say quarterly — whereas real-time infor-
mation — daily, weekly or monthly — during the quarter can be used to assess and
potentially continuously update the state of the low-frequency series, or put differ-
ently, nowcast the series of interest. Traditional methods being used for nowcasting
rely on dynamic factor models which treat the underlying low-frequency series of in-
terest as a latent process with high-frequency data noisy observations. These models
are naturally cast in a state-space form, and inference can be performed using stan-
dard techniques (in particular the Kalman filter, see Bańbura, Giannone, Modugno,
and Reichlin (2013) for a recent survey).

Things get more complicated when we are operating in a data-rich environment
and we have many target variables. Put differently, we are no longer interested in
nowcasting a single key series such as the GDP growth where we could devote a lot of
resources to that particular series. A good example is corporate earnings nowcasting
for a large cross-section of corporate firms. The fundamental value of equity shares
is determined by the discounted value of future payoffs. Every quarter investors get
a glimpse of firms’ potential payoffs with the release of corporate earnings reports.
In a data-rich environment, stock analysts have many indicators regarding future
earnings that are available much more frequently. Ball and Ghysels (2018) took a
first stab at automating the process using MIDAS regressions. Since their original
work, much progress has been made on machine learning (ML) regularized mixed
frequency regression models.

In the context of earnings, we are potentially dealing with a large set of individual
firms for which there are many predictors. From a practical point of view, this is
clearly beyond the realm of nowcasting using state space models. In the current
paper, we significantly expand the tools of nowcasting in a data-rich environment by
exploiting panel data structures. Panel data regression models are well suited for the
firm-level data analysis as both the time series and cross-sectional dimensions can be
exploited. In such models, time-invariant firm-specific effects are typically used to
capture cross-sectional heterogeneity in the data. This is combined with regularized
regression machine learning methods which are becoming increasingly popular in
economics and finance as a flexible way to model predictive relationships via variable
selection. We focus on the panel data regressions in a high-dimensional data setting
where the number of covariates could be large and potentially exceed the available
sample size. This may happen when the number of firm-specific characteristics, such
as textual analysis news data or firm-level stock returns, is large, and/or the number
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of aggregates, such as market returns, macro data, etc., is large.

Our paper relates to several existing papers in the literature. Khalaf, Kichian,
Saunders, and Voia (2021) consider low-dimensional dynamic mixed frequency panel
data models but do not deal with high-dimensional data situations in the context
of nowcasting or forecasting. Similarly, Fosten and Greenaway-McGrevy (2019) con-
sider nowcasting with a mixed-frequency VAR panel data model, but not in the
context of a high-dimensional data-rich environment that we are interested in here.
Babii, Ball, Ghysels, and Striaukas (2022) introduce the sparse-group LASSO (sg-
LASSO) regularization machine learning methods for heavy-tailed dependent panel
data regressions potentially sampled at different time series frequencies. They derive
oracle inequalities for the pooled and fixed effects models, the debiased inference for
pooled regression, and consider an application to the Granger causality testing. In
this paper, we explore how to use their framework for nowcasting large panels of
low-frequency time series.

We focus on nowcasting current quarter firm-specific price-earnings ratios (hence-
forth P/E ratios). This means we focus on evaluating model-based within-quarter
predictions for very short horizons. It is widely acknowledged that P/E ratios are a
good indicator of the future performance of a company and, therefore, are used by an-
alysts and investment professionals to base their decisions on which stocks to pick for
their investment portfolios. Typically investors rely on consensus forecasts of earn-
ings made by a pool of analysts. We, therefore, choose such consensus forecasts as
the benchmark for our proposed machine learning methods. Ball and Ghysels (2018)
and Carabias (2018) documented that analysts tend to focus on their firm/industry
when making earnings predictions while not fully taking into account the impact of
macroeconomic events. Babii, Ball, Ghysels, and Striaukas (2022) tested formally
in a high-dimensional data setting the hypothesis that systematic and predictable
errors occur in analyst forecasts and confirmed empirically that they leave money
on the table. The analysis in the current paper is therefore an logical extension of
this prior work. In addition, we also compare our proposed new methods with the
MIDAS regression forecast combination approach used by Ball and Ghysels (2018)
as well as a simple random walk model.

Our high-frequency regressors include traditional macro and financial series as
well as non-standard series generated by textual analysis of financial news. We
consider structured pooled and fixed effects sg-LASSO panel data regressions with
mixed frequency data (sg-LASSO MIDAS). By “structured” we mean that the ML
procedure is set up such that it recognizes the time series and panel structure of the
data. This is a departure from standard ML which is rooted in a tradition of i.i.d.
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covariates and therefore time series and panel data structures are not recognized.
For the purpose of comparison, we include elastic net estimators in our analysis, as
a representative example of standard ML.

In our empirical analysis we study nowcasting the firm-level P/E ratio for a
large set of firms. Moreover, we decompose the (log of) the P/E ratio into the
return for firm i and analyst prediction errors. Therefore, nowcasting the log P/E
ratio could also be achieved via nowcasting its two components. The decomposition
corresponds to the distinction between analyst assessments of firm i’s earnings and
market/investor assessments of the firm.

Our empirical results can be summarized as follows. Predictions based on analyst
consensus exhibit significantly higher mean squared forecast errors (MSEs) compared
to model-based predictions. These model-based predictions involve either direct log
P/E ratio nowcasts or their individual components. The MSE for the random walk
model and analysts’ concensus are quite similar, and therefore random walk predic-
tions are outperformed by the model-based ones as well. A substantial proportion
of firms (approximately 60%) exhibit low MSE values, indicating a high level of pre-
diction accuracy. However, there are a few firms for which the MSEs are relatively
larger, suggesting lower prediction performance for these specific cases. Comparing
direct log P/E ratio nowcasts versus those based on its components, we observe a
substantial improvement in prediction accuracy when using the individual compo-
nents. This improvement is consistently evident across individual, pooled, and fixed
effects regression models. Moreover, the sparsity patterns differ significantly across
the direct versus component prediction models.

Our framework allows us to go beyond providing quarterly nowcasts and gen-
erate daily updates of earnings series. Leveraging the daily influx of information
throughout the quarter, we continuously re-estimate our models and produce now-
cast updates as soon as new data becomes available. We report the distribution of
Mean Squared Errors (MSEs) across firms for five distinct nowcast horizons: 20-day,
15-day, 10-day, and 5-day ahead, as well as the end of the quarter and show that as
the horizons become shorter, both the median and upper quartile of MSEs decrease.
The sg-LASSO estimator we employ in our study is well-suited for incorporating
grouped fixed effects. This approach involves grouping firm-specific intercepts based
on either statistical procedures or economic reasoning, as outlined in Bonhomme and
Manresa (2015). In our analysis, we utilize the Fama French industry classification to
form 10 distinct groups for grouping fixed effects. Our findings suggest that grouped
fixed effects strike a better balance between capturing heterogeneity and pooled pa-
rameters, resulting in more accurate nowcast predictions. These results support the
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notion that incorporating group fixed effects enhances the overall performance of our
forecasting model.

Next we address the challenge of missing earnings data, which can complicate
the analysis. We examine the performance of parameter imputation methods in
computing nowcasts, see, e.g, Brown, Ghysels, and Gredil (2023), even when earnings
and/or earnings forecasts are missing for certain observations in the sample. The
results obtained through parameter imputation outperform the analyst consensus
nowcasts in terms of prediction accuracy.

The paper is organized as follows. Section 2 introduces the models and estima-
tors. A simulation study reporting the finite sample nowcasting performance of our
proposed methods appears in Section 3. The results of our empirical application
analyzing price-earnings ratios for a panel of individual firms are reported in Section
4. Section 5 concludes. All technical details and detailed data descriptions appear
in the Appendix and the Online Appendix.

2 High-dimensional mixed frequency panel data

In this section, we describe the methodological approach of the paper. Motivated
by our application, we will refer to the cross-sectional observations as firms, the
low-frequency observations as quarterly while the high-frequency observations are
daily or monthly. However, the notation presented in this section is generic and can
correspond to other entities and frequencies. The objective is to nowcast {yi,t : i ∈
[N ], t ∈ [T ]} (where for a positive integer p, we put [p] = {1, 2, . . . , p}), in our case
a panel of P/E ratios (or its decomposition into returns and analyst forecast errors)
for N firms observed at T time periods. The covariates consist of K time-varying
predictors measured potentially at higher frequencies{

xi,t−j/nH
k ,k : i ∈ [N ], t ∈ [T ], j = 0, . . . , nL

kn
H
k − 1, k ∈ [K]

}
,

where nH
k is the number of high-frequency observations for the kth covariate in a

low-frequency time period t, and nL
k is the number of low-frequency time periods

used as lags. For instance, nL
k = 1 corresponds in our application to a quarter of

high-frequency lags used as covariates and nH
k = 3 corresponds to monthly data with

3 month of data available per quarter. Note that we can think of mixtures of say
annual, quarterly, monthly and weekly data, and therefore nH

k represents different
high frequency sampling frequencies and associated lags nL

kn
H
k .
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In our empirical analysis we examine three types of regression model specifica-
tions: (a) regularized single equation regressions for each individual firm, (b) regular-
ized panel regressions with pooling, and (c) regularized panel regressions with fixed
effects. Hence, in (a) we do not explore the panel structure of the data, whereas in
(b) and (c) we do. To discuss the model specifications, we focus here on (b) and (c),
keeping in mind that the single regression case is a straightforward simplification of
the panel regression models.

Consider the mixed frequency panel data regression for yi,t|τ , that is observation
i for low-frequency nowcasting y at time t using information up to τ :

yi,t|τ = αi +
K∑
k=1

ψ(L1/nH
k ; βk)xi,τ,k + ui,t|τ ,

where αi is the entity-specific intercept (depending on τ but we suppress this detail
to simplify notation), and

ψ(L1/nH
k ; βk)xi,τ,k =

1

kmax

kmax−1∑
j=0

βj,kL
j/nH

k xi,τ,k (1)

where kmax is the maximum lag length which may depend on the covariate k, and for
each high frequency covariate xi,τ,k we have the most up to date information available
at time τ. This may imply that for some high frequency regressors this is stale
information as they have not been updated yet, but presumably at least some of the
high frequency data are fresh real-time information at the time τ the nowcast is being
made. For instance, in our quarterly/monthly application we can have τ = (t− 1)+
1/3 in which case we nowcast quarter t with information available at the end of the
first month of that quarter. In this example, some high frequency series for the first
month may be available while some may not due to say publication lags. Likewise,
with τ = (t − 1) + 2/3 we can revise the previous nowcast with one extra month
of information, which taking into account publication lags may include observations
from the first month as the most recent releases. It should parenthetically be noted
that for τ ≤ t − 1, we are dealing with a forecasting situation and therefore our
analysis applies to both nowcasting and - ceteris paribus - forecasting.

To reduce the dimensionality of the high-frequency lag polynomial, we follow the
MIDAS ML literature, see Babii, Ghysels, and Striaukas (2021, 2022), and estimate
a weight function ω parameterized by a relatively small number of coefficients L

ψ(L1/nH
k ; βk)xi,τ,k =

1

kmax

kmax−1∑
j=0

ω

(
j

nH
k

; βk

)
xi,τ,k,
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where the MIDAS weight function is ω(s; βk) =
∑L−1

l=0 βl,kwl(s), (wl)l≥0 is a collection
of L approximating functions, called the dictionary, and βk ∈ RL is the unknown
parameter. An example of a dictionary used in the MIDAS ML literature is the set
of orthogonal Legendre polynomials. To streamline notation it will be convenient to
assume, without loss of generality, a common lag length, i.e. k̄max = kmax ∀ k ∈ [K].
The linear in parameters dictionaries map the MIDAS regression to a standard linear
regression framework. In particular, define xi = (Xi,1W, . . . , Xi,KW ), where for each
k ∈ [K], Xi,k = (xi,τ−j/nH

k ,k, j = 0, . . . , k̄max−1)τ∈[T ] is a T×k̄max matrix of covariates

and k̄maxW = (wl(j/n
H
k ; βk)0≤l≤L−1,0≤j≤k̄max

is a k̄max × L matrix corresponding to
the dictionary. In addition, let yi = (yi,t|τ , t, τ ∈ [T ])⊤ and ui = (ui,t|τ , t, τ ∈ [T ])⊤.
The regression equation after stacking time series observations for each firm i ∈ [N ]
is as follows

yi = ιαi + xiβ + ui,

where ι ∈ RT is the all-ones vector and β ∈ RLK is a vector of slope coefficients.
Lastly, put y = (y⊤

1 , . . . ,y
⊤
N)

⊤, X = (x⊤
1 , . . . ,x

⊤
N)

⊤, and u = (u⊤
1 , . . . ,u

⊤
N)

⊤. Then
the regression equation after stacking all cross-sectional observations is

y = Bα +Xβ + u,

whereB = IN⊗ι, IN isN×N identity matrix, and⊗ is the Kronecker product. Given
that the number of potential predictors K can be large, additional regularization can
improve the predictive performance in small samples. To that end, we take advantage
of the sg-LASSO regularization, suggested by Babii, Ghysels, and Striaukas (2022).

The fixed effects sg-LASSO estimator ρ̂ = (α̂⊤, β̂⊤)⊤ solves

min
(a,b)∈RN+p

∥y −Ba−Xb∥2NT + 2λΩ(b), (2)

where Ω is the sg-LASSO regularizing functional. It is worth stressing that the design
matrix X does not include the intercept and that we do not penalize the fixed effects
which are typically not sparse. In addition, ∥.∥2NT = |.|2/(NT ) is the empirical norm
and

Ω(b) = γ|b|1 + (1− γ)∥b∥2,1,

is a regularizing functional. It is a linear combination of the ℓ1 LASSO and ℓ2,1
group LASSO norms. Note that for a group structure G described as a partition
of [p] = {1, 2, . . . , p}, the group LASSO norm is computed as ∥b∥2,1 =

∑
G∈G |bG|2,

while |.|q denotes the usual ℓq norm. The group LASSO penalty encourages sparsity
between groups whereas the ℓ1 LASSO norm promotes sparsity within groups and
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allows us to learn the shape of the MIDAS weights from the data. The parameter
γ ∈ [0, 1] determines the relative weights of the ℓ1 (sparsity) and the ℓ2,1 (group
sparsity) norms, while the amount of regularization is controlled by the regularization
parameter λ ≥ 0.

In Section 1, we called our approach structured ML because the group structure
allows us to embed the time series structure of the data. More specifically, these
structures are represented by groups covering lagged dependent variables and groups
of lags for a single (high-frequency) covariate. Throughout the paper, we assume
that groups have fixed size, and the group structure is known by the econometrician.
Both are reasonable assumptions to make in the context of our empirical application.

For pooled regressions, we assume that all entities share the same intercept pa-
rameter α1 = · · · = αN = α. The pooled sg-LASSO estimator ρ̂ = (α̂, β̂⊤)⊤ solves

min
r=(a,b)∈R1+p

∥y − aι−Xb∥2NT + 2λΩ(r). (3)

Pooled regressions are attractive since the effective sample size NT can be huge, yet
the heterogeneity of individual time series may be lost. If the underlying series have
a substantial heterogeneity over i ∈ [N ], then taking this into account might reduce
the projection error and improve the predictive accuracy.

Babii, Ball, Ghysels, and Striaukas (2022) provide the theoretical analysis of pre-
dictive performance of regularized panel data regressions with the sg-LASSO regu-
larization, including as special cases (a) standard LASSO, (b) group LASSO regular-
izations as well as (c) generic high-dimensional panels not involving mixed frequency
data. Finally, Babii, Ball, Ghysels, and Striaukas (2022) also develop the debiased
inferential methods and Granger causality tests for pooled panel data regressions.

3 Monte Carlo experiments

It is not clear that the aforementioned theory is of practical use in the context of
nowcasting using modestly sized samples of data. For this reason, we investigate
in this section the finite sample nowcasting performance of the machine learning
methods covered so far. We consider the standard (unstructured) elastic net with
UMIDAS (called Elnet-U), where UMIDAS refers to unconstrained MIDAS proposed
by Foroni, Marcellino, and Schumacher (2015) in a classic non-ML context, and sg-
LASSO with MIDAS. Both methods require selecting two tuning parameters λ and
γ. In the case of sg-LASSO, γ is the relative weight of LASSO and group LASSO
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penalties while in the case of the elastic net γ interpolates between LASSO and ridge.
In both cases we report results on a grid γ ∈ {0, 0.2, . . . , 1}.

In addition to evaluating the performance over the grid of γ tuning parameter
values, we need to select the λ tuning parameter. To do so, we consider several
approaches. First, we adapt the K-fold cross-validation to the panel data setting.
To that end, we resample the data by blocks respecting the time-series dimension
and creating folds based on cross-sectional units instead of the pooled sample. We
use the 5-fold cross-validation both in the simulation experiments and the empirical
application. We also consider the following three information criteria: BIC, AIC,
and corrected AIC (AICc) of Hurvich and Tsai (1989). Assuming that yi,t|xi,t are
i.i.d. draws from N(αi + x⊤i,tβ, σ

2), the log-likelihood of the sample is

L(α, β, σ2) ∝ − 1

2σ2

N∑
i=1

T∑
t=1

(yi,t − αi − x⊤i,tβ)
2.

Then, the BIC criterion is

BIC =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

log(NT )

NT
× df,

where df denotes the degrees of freedom, σ̂2 is a consistent estimator of σ2, µ̂ = α̂ι
for the pooled regression, and µ̂ = Bα̂ for fixed effects regression. The degrees of
freedom are estimated as d̂f = |β̂|0+1 for the pooled regression and d̂f = |β̂|0+N for
the fixed effects regression, where |.|0 is the ℓ0-norm defined as a number of non-zero
coefficients; see Zou, Hastie, and Tibshirani (2007) for more details. The AIC is
computed as

AIC =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

2

NT
× d̂f ,

and the corrected Akaike information criteria is

AICc =
∥y − µ̂−Xβ̂∥2NT

σ̂2
+

2d̂f

NT − d̂f − 1
.

The AICc is typically a better choice when p is large relative to the sample size. We
report the results for each of the tuning parameter selection criteria for λ, along the
grid choice for γ.

8



3.1 Simulation Design

To assess the predictive performance of pooled panel data models, we simulate the
data from the following DGP with a quarterly/monthly frequency mix in mind and
k̄max = kmax with nH

k = nH ∀ k :

yi,t|τ = α +
K∑
k=1

k̄−1
max

k̄max−1∑
j=0

ω(j/nH ; βk)xi,τ−j/nH ,k + ui,t|τ ,

where i ∈ [N ], t ∈ [T ], α is the common intercept, k̄−1
max

∑k̄max−1
j=0 ω(j/nk; βk) the

weight function for k-th high-frequency covariate and the error term is either ui,t|τ ∼i.i.d.

N(0, 1) or ui,t|τ ∼i.i.d. student-t(5).

We are interested in a quarterly/monthly data mix, and use four quarters of
data for the high-frequency regressors which covers 12 high-frequency lags for each
regressor. In terms of information sets we start with τ = t− 1, which corresponds to
a prediction setting and then have τ = t− 1+ 1/3, i.e. nowcasting with one month’s
worth of information. We set the number of relevant high-frequency regressorsK = 6.
The high-frequency regressors are generated as K i.i.d. realizations of the univariate
autoregressive (AR) process xh = ρxh−1 + εh, where ρ = 0.6 and either εh ∼i.i.d.

N(0, 1) or εh ∼i.i.d. student-t(5), where h denotes the high-frequency sampling. We
rely on a commonly used weighting scheme in the MIDAS literature, namely ω(s; βk)
for k = 1, 2, . . . , 6 are determined by beta densities respectively equal to Beta(1, 3)
for k = 1, 4, Beta(2, 3) for k = 2, 5, and Beta(2, 2) for k = 3, 6; see Ghysels, Sinko,
and Valkanov (2007) or Ghysels and Qian (2019), for further details. The MIDAS
regressions are estimated using Legendre polynomials of degree L = 3.

We consider DGPs featuring pooled panels and fixed effects. For the pooled panel
regression DGPs we simulate the intercepts as α ∼ Uniform(−4, 4). For the fixed
effects models the individual fixed effects are simulated as αi ∼i.i.d Uniform(−4, 4)
and are kept fixed throughout the experiment.

For τ = t−1, the Baseline scenario, in the estimation procedure we add 24 noisy
covariates which are generated in the same way as the relevant covariates, use 4
low-frequency lags and the error terms ui,t|τ and εh are Gaussian. In the student-t(5)
scenario we replace the Gaussian error terms with a student-t(5) distribution while
in the large dimensional scenario we add 94 noisy covariates. For each scenario, we
simulate N = 25 i.i.d. time series of length T = 50; next we increase the cross-
sectional dimension to N = 75 and time series to T = 100.

Finally, for τ = t − 1 + 1/3 the thought experiment in the simulation design is
one where the first high-frequency observations during low frequency t are available.
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The nowcaster of course does not know which of the covariates are relevant nor does
she know the parameters of the prediction rule. We will call this scheme “one-step
ahead” nowcasts.

3.2 Simulation results

Tables 1 and 2 cover the average mean squared forecast errors (MSFE) for one-step
ahead nowcasts for the three simulation scenarios. We report results for sg-LASSO
with MIDAS weights (left block) and elastic net with UMIDAS (right block) using
both pooled panel models (Table 1) and fixed effects ones (Table 2). We report
results for the best choice of the γ tuning parameter.1

Firstly, structured sg-LASSO-MIDAS consistently outperforms unstructured Elnet-
U for all DGPs and in both pooled and fixed effects cases. The most significant
discrepancy between the two methods is observed in situations with small N and
small T, specifically when N = 25 and T = 50. As either N or T increases, this
gap gradually diminishes. When comparing the results of pooled and fixed effects,
it becomes evident that the difference between the two approaches — structured sg-
LASSO-MIDAS versus Elnet UMIDAS — widens further in the case of fixed effects
with student-t(5) data. This indicates that our structured approach yields higher
quality estimates for the fixed effects and thus more accurate nowcasts.

In the case of sg-LASSO-MIDAS, the best performance is achieved for γ /∈ {0, 1}
for both pooled panel data and fixed effects cases, while γ = 0, i.e. ridge regression,
seems to be dominated by estimators that γ /∈ {0, 1} in both pooled and fixed effects
cases. For the student-t(5) and large dimensional DGP, we observe a decrease in
the performance for all methods. However, the decrease in the performance is larger
for the student-t(5) DGP, revealing that heavy-tailed data have — as expected — a
stronger impact on the performance of the estimators.

For the pooled panel data case, increasing N from 25 to 75 seems to have a larger
positive impact on the performance than an increase in the time-series dimension
from T = 50 to T = 100. The difference appears to be larger for student-t(5) and
large dimensional DGPs and/or for the elastic net case. Turning to the fixed effects
results, the differences seem to be even sharper, in particular for student-t(5) and
large dimensional DGPs.

When comparing the results across the different model selection methods, i.e.,
cross-validation and the three information criteria, we find that almost always cross-

1Results for the grid of γ ∈ {0.0, 0.2, . . . , 1.0} are reported in the Online Appendix Tables OA.1-
OA.3.
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sg-LASSO Elnet-U

N/T = 25/50 75/50 25/100 25/50 75/50 25/100

Panel A. Baseline
CV 1.191 1.157 1.168 1.213 1.158 1.172
BIC 1.270 1.175 1.202 1.384 1.211 1.247
AIC 1.234 1.160 1.187 1.273 1.172 1.213
AICc 1.237 1.161 1.188 1.279 1.172 1.217

Panel B. Student-t(5)

CV 1.280 1.245 1.248 1.299 1.243 1.256
BIC 1.389 1.274 1.293 1.570 1.317 1.367
AIC 1.345 1.259 1.272 1.411 1.283 1.298
AICc 1.344 1.259 1.273 1.412 1.283 1.300

Panel C. Large-dimensional

CV 1.204 1.160 1.185 1.255 1.165 1.188
BIC 1.273 1.175 1.214 1.409 1.208 1.289
AIC 1.259 1.166 1.191 1.350 1.198 1.232
AICc 1.260 1.167 1.192 1.353 1.200 1.232

Table 1: The table reports the MSFE for nowcasting accuracy for the pooled estimator
for the Baseline (Panel A), student-t(5) (Panel B), and large-dimensional (Panel C) DGPs
for the sg-LASSO-MIDAS (rows sg-LASSO) and elastic net UMIDAS (rows Elnet-U). We
vary the cross-sectional dimension N ∈ {25, 75} and time series dimension T ∈ {50, 100}.
We report results for 5-fold cross-validation, BIC, AIC, AICc information criteria λ tuning
parameter calculation methods and for the best choice of γ tuning parameter.
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sg-LASSO Elnet-U

N/T = 25/50 75/50 25/100 25/50 75/50 25/100

Panel A. Baseline
CV 1.198 1.170 1.164 1.245 1.183 1.184
BIC 1.304 1.202 1.213 1.537 1.259 1.313
AIC 1.282 1.192 1.196 1.380 1.222 1.237
AICc 1.284 1.193 1.196 1.284 1.193 1.196

Panel B. Student-t(5)

CV 1.278 1.256 1.248 1.329 1.270 1.271
BIC 1.437 1.306 1.310 1.694 1.367 1.404
AIC 1.389 1.292 1.294 1.478 1.316 1.342
AICc 1.393 1.293 1.295 1.495 1.316 1.348

Panel C. Large-dimensional

CV 1.214 1.170 1.172 1.282 1.197 1.193
BIC 1.344 1.213 1.229 1.662 1.298 1.342
AIC 1.300 1.243 1.202 1.404 1.384 1.235
AICc 1.301 1.205 1.204 1.405 1.247 1.238

Table 2: The table reports the MSFE for nowcasting accuracy for the fixed effects estimator
for the Baseline (Panel A), student-t(5) (Panel B), and large-dimensional (Panel C) DGPs
for the sg-LASSO-MIDAS (rows sg-LASSO) and elastic net UMIDAS (rows Elnet-U). We
vary the cross-sectional dimension N ∈ {25, 75} and time series dimension T ∈ {50, 100}.
We report results for 5-fold cross-validation, BIC, AIC, AICc information criteria λ tuning
parameter calculation methods and for the best choice of γ tuning parameter.
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validation leads to smaller prediction errors in both pooled and fixed effects panel
data cases. Notably, the gains appear to be larger for the large N and T values.
Comparing BIC, AIC, and AICc information criteria, the results appear to be similar
for AIC and AICc across DGPs and different sample sizes, while the BIC performance
is slightly worse than AIC and AICc.

4 Nowcasting price-earnings ratios

Ball and Ghysels (2018), Carabias (2018) and Babii, Ball, Ghysels, and Striaukas
(2022) documented that analysts make systematic and predictable errors in their P/E
forecasts. We therefore consider nowcasting the P/E ratios using a set of predictors
that are sampled at mixed frequencies for a large cross-section of firms.

A natural question one may ask: should we nowcast P/E ratio directly or it’s
components. We, therefore, decompose the (log of) the P/E ratio for firm i as
follows:

pei,t+1 ≡ log(Pi,t+1/Ei,t+1) = log((Pi,t+1/Pi,t)/(Ei,t+1/Pi,t))

= ri,t+1 − log((Ei,t+1/E
a
i,t+1|t)/(Pi,t/E

a
i,t+1|t))

= ri,t+1 − eai,t+1|t + log(Pi,t/E
a
i,t+1|t) (4)

where ri,t+1 is the log return from t+1 to t for firm i, Ea
i,t+1|t the analyst’s prediction

at time t pertaining to t + 1 earnings, and eai,t+1|t ≡ log(Ei,t+1) − log(Ea
i,t+1|t) is the

log earnings forecast error of analysts pertaining to their end of period t prediction
for t+1. Finally, log(Pi,t/E

a
i,t+1|t) is perfectly known at time t. The above defines an

additive decomposition of the log P/E ratio into the return for firm i and the analyst
prediction error. Therefore, nowcasting the log P/E ratio could also be achieved via
nowcasting its two components. The decomposition corresponds to the distinction
between analyst assessments of firm i’s earnings and market/investor assessments of
the firm.

There is a considerable literature on using machine learning to predict returns, see
e.g. Rapach, Strauss, and Zhou (2010), Kim and Swanson (2014), Gu, Kelly, and Xiu
(2020), D’Hondt, De Winne, Ghysels, and Raymond (2020), among others. Here we
are dealing with a slightly modified setting where we are nowcasting quarterly returns
with information during quarter t + 1. Nevertheless, prediction and nowcasting are
closely related. The second component, eai,t+1|t has been explored by Babii, Ball,

Ghysels, and Striaukas (2022), who revisit a topic raised by Ball and Ghysels (2018)
and Carabias (2018), and confirmed in a rich data setting that analysts tend to focus
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on their firm/industry when making earnings predictions while not fully taking into
account the impact of macroeconomic events. Put differently, one can forecast and
nowcast analyst prediction errors.

It should also parenthetically be noted that equation (4) can be rewritten as a
decomposition of returns, namely:

ri,t+1 = pei,t+1 + eai,t+1|t + log(Pi,t/E
a
i,t+1|t) (5)

which can be viewed as an alternative decomposition of returns compared to Ferreira
and Santa-Clara (2011). They propose forecasting separately the three components
of stock market returns: (a) the dividend price ratio, (b) earnings growth, and (c)
price-to-earnings ratio growth. Ferreira and Santa-Clara (2011) argue that predict-
ing the separate components yields better return predictions compared to the usual
models producing direct forecasts of the latter. They estimate the expected earnings
growth using a 20-year moving average of the growth in earnings per share. The
expected dividend price ratio is estimated by the current dividend price ratio. This
implicitly assumes that the dividend price ratio follows a random walk. While our
application is different in many regards, the arguments being considered are simi-
lar. It is worth reminding ourselves that if the nowcast p̂ei,t+1 is constructed from
individual component nowcasts, then

MSE(p̂ei,t+1) = MSE(r̂i,t+1) + MSE(êai,t+1|t)− 2E
[
(ri,t+1 − r̂i,t+1)(e

a
i,t+1|t − êai,t+1|t)

]
(6)

Hence, depending on the co-movements between returns for firm i, ri,t+1 and analyst
earning prediction errors eai,t+1|t, we are better off to directly predict pei,t+1 or its
components. If the latter are positively correlated, then we are better off direct
forecasting is preferred.

Given the aforementioned decomposition, we are interested in the following LHS
variables: pei,t+1, ri,t+1 and eai,t+1|t. First, we estimate the individual sg-LASSO MI-
DAS regressions for each firm i = 1, . . . , N , namely:

yi = ιαi + xiβi + ui,

where the firm-specific predictions are computed as ŷi,t+1 = α̂i + x⊤i,t+1β̂i. As noted
in Section 2, xi contains lags of the low-frequency target variable and high-frequency
covariates to which we apply Legendre polynomials of degree L = 3.

Next, we estimate the following pooled and fixed effects sg-LASSO MIDAS panel
data models

y = αι+Xβ + u Pooled

y = Bα +Xβ + u Fixed Effects

14



and compute predictions as

ŷi,t+1 = α̂ + x⊤i,t+1β̂ Pooled

ŷi,t+1 = α̂i + x⊤i,t+1β̂ Fixed Effects.

Once we compute the forecast for the log of P/E ratio (pei,t+1), log returns (ri,t+1)
and log earnings forecast error (eai,t+1|t), we compute the final prediction accuracy

metrics by either taking directly log P/E nowcast or the sum of its components, i.e.,
Ŝ = r̂i,t+1 − êai,t+1|t + log(Pi,t/E

a
i,t+1|t).

We benchmark firm-specific and panel data regression-based nowcasts against
two simple alternatives. First, we compute forecasts for the RW model as

ŷi,t+1|t = yi,t.

Second, we consider predictions of P/E implied by analysts’ earnings nowcasts using
the information up to time t+ 1, i.e.

ŷi,t+1|t = ȳai,t+1|t,

where the predicted/nowcasted log of P/E ratio is based on consensus earnings fore-
casts pertaining to the end of the t + 1 quarter using the stock price at the end of
quarter t. To measure the forecasting performance, we compute the mean squared
forecast errors (MSE) for each method. Let ȳi = (yi,Tis+1, . . . , yi,Tos)

⊤ represent the
out-of-sample realized P/E ratio values, where Tis and Tos denote the last in-sample
observation for the first prediction and the last out-of-sample observation respec-
tively, and let ŷi = (ŷi,tis+1, . . . , ŷi,tos) collect the out-of-sample forecasts. Then, the
mean squared forecast errors are computed as

MSE =
1

N

N∑
i=1

1

T − Tis + 1
(ȳi − ŷi)

⊤(ȳi − ŷi).

We look at 210 US firms and use 24 predictors, including traditional macro and
financial series as well as non-traditional series from textual analysis of financial
news. We apply (a) single regression individual firm high-dimensional regressions,
(b) pooled and (c) individual fixed effects sg-LASSO MIDAS panel data models and
report results for several choices of the tuning parameters. We compare these three
type of models with several benchmarks, which include a random walk (RW) model
and analysts’ consensus forecasts. The remainder of the section is structured as
follows. We start with a short review of the data followed by a summary of the
empirical results.
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4.1 Data description

The full sample consists of observations between the 1st of January, 2000 and the 30th

of June, 2017. Due to the lagged dependent variables in the models, our effective
sample starts in the third fiscal quarter of 2000. We use the first 25 observations
for the initial sample, and use the remaining 42 observations for evaluating the
out-of-sample forecasts, which we obtain by using an expanding window forecasting
scheme. We collect data from CRSP and I/B/E/S to compute the quarterly P/E
ratios and firm-specific financial covariates; RavenPack is used to compute daily
firm-level textual-analysis-based data; real-time monthly macroeconomic series are
from the FRED-MD dataset, see McCracken and Ng (2016) for more details; FRED
is used to compute daily financial markets data and, lastly, monthly news atten-
tion series extracted from the Wall Street Journal articles are retrieved from Bybee,
Kelly, Manela, and Xiu (2021).2 Online Appendix Section OA.2 provides a detailed
description of the data sources.3

Our target variable is the P/E ratio for each firm. To compute it, we use CRSP
stock price data and I/B/E/S earnings data. Earnings data are subject to release
delays of 1 to 2 months depending on the firm and quarter. Therefore, to reflect the
real-time information flow, we compute the target variable using stock prices that are
available in real-time. We also take into account that different firms have different
fiscal quarters, which also affects the real-time information flow.

For example, suppose for a particular firm the fiscal quarters are at the end of
the third month in a quarter, i.e. end of March, June, September, and December.
The consensus forecast of the P/E ratio is computed using the same end-of-quarter
price data which is divided by the earnings consensus forecast value. The consensus
is computed by taking all individual prediction values up to the end of the quarter
and aggregating those values by taking either the mean or the median. To compute
the target variable, we adjust for publication lags and use prices of the publication
date instead of the end of fiscal quarter prices. More precisely, suppose we predict
the P/E ratio for the first quarter. As noted earlier, earnings are typically published
with 1 to 2 months delay; say for a particular firm the data is published on the 25th
of April. In this case, we record the stock price for the firm on 25th of April, and
divide it by the earnings announced on that date.

2The dataset is publicly available at http://www.structureofnews.com/.
3In particular, firm-level variables, including P/E ratios, are described in Online Appendix Table

OA.4, and the other predictor variables in Online Appendix Table OA.5. The list of all firms we
consider in our analysis appears in Online Appendix Table OA.6.
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4.2 Models and main results

To simplify the exposition, we denote y as one of the three target variables we con-
sider. The main findings from our analysis are presented in Table 3. Column p̂ei,t+1

reports results for directly nowcasting the log P/E ratio, column Ŝ reports the results
of nowcasting and summing up the components, column ri,t+1 reports results for the
log return component and column êai,t+1|t reports results for the log earnings forecast
error of analysts component. Row RW reports results for the random walk, while
row Consensus for the median consensus nowcast. Panels Individual, Pooled and
Fixed effects report results for different panel data models relative to the consensus
MSE (columns p̂ei,t+1 and Ŝ) and for the components (columns ri,t+1 and ê

a
i,t+1|t) we

report ratios relative to the RW MSE since there are obviously no concensus series
notably for the analyst forecast errors.

Nowcasting Performance

In light of the simulation evidence, we report the empirical results using cross-
validation in Table 3 and provide the full set of results in Online Appendix Table
OA.7. The entries in the top panel of Table 3 reveal that predictions based on
analyst consensus exhibit significantly higher mean squared forecast errors (MSEs)
compared to model-based predictions since all the ratios with respect to the con-
census are less than one (see first two columns). These model-based predictions
involve either direct log P/E ratio nowcasts (first column) or their individual com-
ponents (second column). Since the MSE for RW and concensus are quite similar,
this also implies that RW predictions are outperformed by the model-based ones.
The substantial improvement in the accuracy of model-based predictions compared
to analyst-based predictions underscores the value of employing machine learning
techniques for nowcasting log P/E ratios. Across various machine learning methods,
including single-firm and panel data regressions, we consistently observe enhanced
performance. When comparing the first and second columns, which correspond to
direct log P/E ratio nowcasts versus those based on its components, we observe a
substantial enhancement in prediction accuracy when using the individual compo-
nents. This improvement is consistently evident across individual, pooled, and fixed
effects regression models. To shed light on these findings, we computed the pooled
correlation between returns and earnings for the entire sample, i.e. Corr(ri,t+1, e

a
i,t+1|t)

= -0.206. The correlation indicates a (weak) negative relationship between returns
and earnings. Consequently, the prediction errors of each component tend to off-
set each other, resulting in more accurate aggregated nowcasts (recall equation (6)).
The last two columns of Table 3 present the prediction results for these components.
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p̂ei,t+1 Ŝ r̂i,t+1 êai,t+1|t

All firms

RW 1.355 0.054 0.194
Consensus 1.305

Individual
0.905 0.890 1.088 0.848

DM p-val RW 0.117 0.115 0.181 0.090
DM p-val Cons. 0.156 0.131

Pooled
0.894 0.790 0.964 0.799

DM p-val RW 0.060 0.023 0.128 0.021
DM p-val Cons. 0.075 0.053

Fixed effects
0.814 0.793 0.971 0.803

DM p-val RW 0.051 0.033 0.164 0.032
DM p-val Cons. 0.078 0.063

With single CCI outlier removed (see Figure 2)

RW 1.333 0.053 0.173
Consensus 1.275

Individual
0.978 0.790 1.001 0.812

DM p-val RW 0.585 0.027 0.912 0.081
DM p-val Cons. 0.606 0.034

Pooled
0.777 0.768 0.943 0.788

DM p-val RW 0.025 0.004 0.103 0.018
DM p-val Cons. 0.029 0.006

Fixed effects
0.782 0.767 0.954 0.783

DM p-val RW 0.028 0.004 0.119 0.021
DM p-val Cons. 0.030 0.006

Table 3: Column p̂ei,t+1 reports results for directly nowcasting the log P/E ratio, Ŝ for nowcasting
and summing up the components, ri,t+1 for the log return and êai,t+1|t for the log earnings forecast
error of analysts. RW is for the random walk, while Consensus is the median consensus nowcast.
Panels Individual, Pooled and Fixed effects report results for models relative to the consensus MSE
(p̂ei,t+1 and Ŝ) and for the components (ri,t+1 and êai,t+1|t) relative to the RW MSE. DM is the

Diebold and Mariano (1995) test statistic p-values using one-sided critical values.
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We observe that analyst earnings prediction errors appear to be more predictable
than those of log returns. We also report Diebold and Mariano (1995) test statistic
p-values comparing each model against the RW and consensus benchmarks, pool-
ing all the nowcasting errors across firms. Using one-sided test critical values we
observe that our models outperform both the RW and consensus benchmarks, par-
ticularly when we use the component approach. While we cannot compare the p̂ei,t+1

component with the consensus, judging by the RW benchmark it is clear that the
second component is the most important in terms of nowcasting gains. When we
use individual MIDAS regressions the evidence is less compelling, underscoring the
importance of using panel data models.4

Sparsity Patterns

Figure 1 illustrates the sparsity patterns of selected covariates for the most ef-
fective methods in predicting either log P/E ratios (Panel a) or their components
(Panels b and c). It is worth noting that the sparsity patterns differ significantly
across the three panels. For instance, firm volatility is often chosen as a relevant co-
variate across all targets, albeit not consistently throughout the entire out-of-sample
period. In the case of log P/E ratios, news series related to earnings are frequently
selected, along with firm and market volatility series. Conversely, for log returns, a
denser pattern of covariate selection is observed, distinct from the other two cases.
Interestingly, none of the news-based firm series are chosen for this target. Regarding
log analyst earnings forecast errors, macroeconomic series such as the unemployment
rate, short-term rates, and TED rate are frequently selected. Moreover, unlike log
P/E ratios and returns, news-based firm series occasionally appear in the selected
covariates for this target. The fact that macroeconomic series are drivers for now-
casting the eai,t+1|t component is a confirmation of the findings reported in Ball and

Ghysels (2018), Carabias (2018) and Babii, Ball, Ghysels, and Striaukas (2022).

Figure 2 depicts the histogram of mean squared errors (MSEs) across firms. No-
tably, a substantial proportion of firms (approximately 60%) exhibit low MSE values,
indicating a high level of prediction accuracy. However, there are a few firms for
which the MSEs are relatively larger, suggesting lower prediction performance for

4We also experimented with the forecast combination of MIDAS regressions used by Ball and
Ghysels (2018) and found them to be inferior to the individual MIDAS ML regressions as well as the
panel data models. We therefore refrain from reporting the details here. In addition, we computed
prediction results using LASSO estimator with covariates which are averages within the quarter of
the high frequency regressors, which we refer to as LASSO-AGG. In all but one of the cases reported
in Table 3, the ratio for LASSO-AGG is larger than 1 compared to the corresponding sg-LASSO
with MIDAS, indicating that the latter improves out-of-sample results over LASSO-AGG.
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Figure 1: Sparsity patterns.

these specific cases. The largest MSE is for Crown castle international corporation
(CCI) which appears as a strong outlier.

Removing the single outlier firm has a dramatic impact on the nowcasting perfor-
mance evaluation as shown in the lower panel of Table 3. We now have very strong
evidence that the panel regression models dominate analyst predictions. Again the
component nowcasts are the best, but even the individual regression models do sig-
nificantly better when the component specification is used.

Daily Updates of Nowcasts

Our framework allows us to go beyond providing quarterly nowcasts and gen-
erate daily updates of earnings series. Leveraging the daily influx of information
throughout the quarter, we continuously re-estimate our models and produce now-
cast updates as soon as new data becomes available. In Figure 3, we present the
distribution of Mean Squared Errors (MSEs) across firms for five distinct nowcast
horizons: 20-day, 15-day, 10-day, and 5-day ahead, as well as the end of the quarter.
We report the best model based on Table 3. Notably, as the horizons become shorter,
both the median and upper quartile of MSEs decrease. Therefore, updating nowcasts
with daily information appears to significantly enhance the prediction performance
of log earnings ratios. The largest errors persist for the same firm, CCI.
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Figure 2: Histogram of mean squared errors.

Grouped Fixed Effects based on
Fama-French Industry Classification

The sg-LASSO estimator we employ in our study is well-suited for incorporating
grouped fixed effects. This approach involves grouping firm-specific intercepts based
on either statistical procedures or economic reasoning, as outlined in Bonhomme and
Manresa (2015). In our analysis, we utilize the Fama French industry classification to
form 10 distinct groups for grouping fixed effects. Rather than assuming a common
fixed effect for all firms within a group, we apply a group penalty to the fixed effects
of firms belonging to the same industry. This allows us to capture industry-specific
heterogeneity while avoiding overfitting.

We present the findings in Table 4, which highlight several key observations. Sim-
ilar to previous analyses, our results suggest that predicting individual components
of the log price-earnings ratio leads to more accurate aggregate nowcasts compared
to a direct nowcast approach. Furthermore, we observe that the use of group fixed
effects improves the accuracy of our nowcasts when forecasting individual compo-
nents. This can be seen in column 2 of both Tables 3 and 4. Comparatively, when
considering the best tuning parameter choice, grouped fixed effects outperform other
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Figure 3: Distribution of MSEs of the best performing model in Table 3. Models are
re-estimated for each horizon. The best model based on Table 3 is reported.

panel models, including the pooled panel model. Therefore, our findings suggest
that grouped fixed effects strike a better balance between capturing heterogeneity
and pooled parameters, resulting in more accurate nowcast predictions. These re-
sults support the notion that incorporating group fixed effects enhances the overall
performance of our forecasting model.

In Figure 4, we present the distribution of (MSEs) across firms for five industries,
based on the best model specification from Table 4. The industries we focus on are
the ones with the highest number of firms in our sample. The results reveal varia-
tions in performance among different industries. Specifically, the firms categorized
as Consumer Durables exhibit the lowest accuracy in terms of the median MSE, al-
though the quartiles are comparatively lower compared to the other industries. On
the other hand, the nowcasts for firms in the Consumer Nondurables and Others cat-
egories demonstrate the highest accuracy at the median. However, it is important
to note that the largest errors occur within the firms classified as Others.

Nowcasting with Missing Data — Parameter Imputation Method

Next we address the challenge of missing earnings data, which can complicate
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p̂ei,t+1 Ŝ
Group fixed effects

CV 0.862 0.789
BIC 0.834 0.789
AIC 0.842 0.791
AICc 0.842 0.790

Table 4: Nowcasting results. Column p̂ei,t+1 reports results for directly nowcasting

the log P/E ratio and the column Ŝ reports the results of nowcasting and summing
up the components. Results are reported relative to the Consensus nowcasts that
appear in Table 3.

the analysis. We examine the performance of parameter imputation methods in
computing nowcasts, see, e.g, Brown, Ghysels, and Gredil (2023), even when earnings
and/or earnings forecasts are missing for certain observations in the sample. We
identify a subset of 117 firms for which at least one earnings observation is available
in our out-of-sample period, and for which we have matched daily news data. To
handle missing data, we match these firms with missing observations to firms in
our main sample using the Fama French industry classification. We then utilize the
parameter estimates obtained from the best group fixed effects model, as shown in
Table 4, to compute the nowcasts of log earnings ratios, either directly or based on
its components. The results of this analysis appear in Table 5.

Firstly, the results obtained through parameter imputation support the conclu-
sion that nowcasting the components of the log earnings ratio yields higher quality
predictions. This indicates that incorporating the individual components of the ra-
tio improves the accuracy of the nowcasts. Secondly, the panel models with the
parameter imputation method outperform the analyst consensus nowcasts in terms
of prediction accuracy. This suggests that employing machine learning panel data
models along with parameter imputation could be a straightforward yet effective
approach in situations where earnings data is not available. Overall, these findings
highlight the potential benefits of leveraging machine learning techniques and im-
putation methods for improving nowcasting accuracy, particularly in cases where
earnings data may be missing.
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Figure 4: Distribution of MSEs for five industries based on Fama French classifica-
tion. The reported resutls are based on the best model specification from Table 4.

5 Conclusions

This paper uses a new class of high-dimensional panel data nowcasting models with
dictionaries and sg-LASSO regularization which is an attractive choice for the pre-
dictive panel data regressions, where the low- and/or the high-frequency lags define
a clear group structure. Our empirical results showcase the advantages of using reg-
ularized panel data regressions for nowcasting corporate earnings either directly or
using a decomposition which separates stock market return predictions and analyst
assessments of a firm’s performance. While nowcasting earnings is a leading exam-
ple of applying panel data MIDAS machine learning regressions, one can think of
many other applications of interest in finance. Beyond earnings, analysts are also
interested in sales, dividends, etc. Our analysis can also be useful for other areas of
interest, such as regional and international panel data settings.
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p̂ei,t+1 Ŝ
Consensus 1.605

CV 0.883 0.753
BIC 0.877 0.756
AIC 0.883 0.754
AICc 0.883 0.753

Table 5: Nowcasting results — parameter imputation method. Column p̂ei,t+1 re-

ports results for directly nowcasting the log P/E ratio and the column Ŝ reports
the results of nowcasting and summing up the components. Row Consensus for the
median consensus nowcast. Panels Individual, Pooled and Fixed effects report results
for different panel data models relative to the consensus MSE.
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