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Preview

Motivation

Regression discontinuity designs and shape restrictions.

Approach

@ New isotonic sharp and fuzzy RDD estimators (iRDD) based on the
boundary corrected isotonic regression;

© Do not estimate tuning parameters.

Results
@ Isotonic regression is inconsistent at the boundary of its support;

@ Non-standard asymptotic approximation for boundary corrected iRDD
estimators based on new tightness results;

© New solution to the bootstrap inconsistency that does not rely on the
nonparametric smoothing.

v
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Nonparametric shape restrictions

(Chetverikov, Santos, Shaikh, 2018)

@ Sharper identification: getting point identification and improving
partial identification;
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Nonparametric shape restrictions

(Chetverikov, Santos, Shaikh, 2018)

@ Sharper identification: getting point identification and improving
partial identification;

@ Testable implications based on shape restrictions;

© Improving finite sample estimation and inference using more
information about the DGP;

@ Shape restrictions are arguably more economically meaningful than
smoothness restrictions: one derivative vs two derivatives.
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Monotone RDDs

Study Outcome(s)

Treatment(s) Running variable

Lee (2008)

Duflo, Dupas and Kremer (2011)
Abdulkadirdglu, Angrist and Pathak (2014)
Lucas and Mbiti (2014)
Hoekstra (2009)

Clark (2010)

Kaniel and Parham (2017)
Schmieder, Von Wachter and Bender (2012)
Card, Dobkin, and Maestas (2008)
Shigeoka (2014)
Carpenter and Dobkin (2000)
Jacob and Lefgren (2004)
Baum-Snow and Marion (2009)
Buettner (2006)

Card, Chetty, and Weber (2007)
Chiang (2009)

Ferreira (2010)

Lalive (2007)

Litschig and Morrison (2013)
Ludwig and Miller (2007)
Matsudaira (2008)

Chay and Greenstone (2005)
Greenstone and Gallagher (2012)

Votes share in next election
Endline scores
Standardized test scores
Probability of graduation
Earnings
Test scores, university enrollment,
Net capital flow
Unemployment duration
Health care utilization
Outpatient visits
Alcohol-related mortality
Academic achievements
Income, property value
Business tax rate
Job finding hazard
Medium run test scores
Probability to move to a new house
Unemployment duration
Education, literacy, poverty
Mortality, educational attainment,
Test scores
Housing prices
Housing prices

Incumbency Initial votes share
Intitial attainment,

Admission scores

Higher-achieving peers
Attending elite school

Attending elite secondary school Admission scores

Attending flagship state university SAT score
Attending selective high school Assignment test
Appearance in the WSJ ranking Returns
Unemployment benefits Age
Coverage under Medicare Age
Cost-sharing policy Age
Ability to drink legally Age
Summer school, grade retention Test scores
Tax credit program Fraction of eligible
Fiscal equalization transfers Tax base
Severance pay Job tenure
Sanctions threat School performance
Ability to transfer tax benefits Age
Unemployment benefits Age

Government transfers
Head Start funding
Summer school
Regulatory status
Superfund clean-up status

Size of municipality
County poverty rate
Test scores
Pollution levels
Ranking of hazard

Figure: Examples of monotone designs
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-
Sharp designs

@ Potential outcomes framework (Hahn, Todd, and Van der Klaauw,
2001)
Y =DY1+(1—D)Yp,

where
o D =1{X > c} is the treatment indicator;
e X € R is the running variable and c is the cut-off;
e Y1, Yy € R are potential outcomes for treated and untreated.
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-
Sharp designs

@ Potential outcomes framework (Hahn, Todd, and Van der Klaauw,
2001)
Y =DY1+(1—D)Yp,

where
o D =1{X > c} is the treatment indicator;
e X € R is the running variable and c is the cut-off;
e Y1, Yy € R are potential outcomes for treated and untreated.

@ Causal effect
0= E[Yl — Yo’X = C].

@ (Y, D, X) are observed while (Y1, Yp) are not: fundamental problem of
causal inference.
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|dentification: assumptions

(OC) One sided continuity: x — E[Y1|X = x] is right-continuous and
x — E[Yp|X = x] is left-continuous at the cut-off.

(M1) Monotonicity 1: x — E[Y1|X = x] and x — E[Yy|X = x] are
monotone in some neighborhood of the cut-off.

(M2) Monotonicity 2: E[Y1]|X = ¢] > E[Yp|X = ¢] in the non-decreasing
case or E[Y1|X = ¢] < E[Yp|X = ¢] in the non-increasing case
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|dentification

Theorem

Suppose that (OC) and (M1) assumptions are satisfied. Then

lim E[Y|X = x] ~limB[Y|X = A (1)

exists and equals to 6. Moreover, under (M1) and (M2) if 6 equals to the
expression in Eq. 1, then the (OC) conditions holds.
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[[lustration

(a) Identification under (OC) (b) Counterexample when (OC) fails

Figure: Identification in the sharp RDD. The thick line represents

E[Yo|X = x],x < 0 and E[Y1]|X = x],x > 0 while the dashed line represents
E[Y1]X = x],x < 0 and E[Yp|X = x],x > 0. The thick line coincides with
x = E[Y|X = «].
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Comments

@ Relax continuity to the one-sided continuity for sharp designs (is this
well-known?).

@ Under two monotonicity conditions, the one-sided continuity is the
weakest possible identifying assumption.

© Manipulation in the running variable seems to be related to failure of
the one-sided continuity of x — E[Yy|X = x] (testable implications?).
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Estimation

Causal effect
0 =ImE[Y|X =x] —limE[Y|X = x].
xlc xTc

@ Empirical practice: estimate conditional mean functions before and
after the cut-off using nonparametric local polynomial estimators and
compute the difference.
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Estimation

Causal effect
0 =ImE[Y|X =x] —limE[Y|X = x].
xlc xTc

@ Empirical practice: estimate conditional mean functions before and
after the cut-off using nonparametric local polynomial estimators and
compute the difference.

@ Asymptotic properties are well-known, see (Fan and Gijbels, 1992).

© Need to select the kernel function and the bandwidth parameter. The
bandwidth is typically estimated from the data and the theory is
developed for the deterministic bandwidth.
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Contributions of this paper

© New approach to monotone sharp and fuzzy RDD based on the
isotonic regression.
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Contributions of this paper

@ New approach to monotone sharp and fuzzy RDD based on the
isotonic regression.
@ Aim to avoid estimating tuning parameters.

© First treatment of the isotonic regression at the boundary of its
support based on a new tightness result, cf. (Kulikov and Lopuhag,
2006) and the KMT approximation for the Grenander estimator.
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Contributions of this paper

@ New approach to monotone sharp and fuzzy RDD based on the
isotonic regression.
@ Aim to avoid estimating tuning parameters.

© First treatment of the isotonic regression at the boundary of its
support based on a new tightness result, cf. (Kulikov and Lopuhag,
2006) and the KMT approximation for the Grenander estimator.

@ New bootstrap methodology for a non-standard inference problem.
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Isotonic regression

© Nonparametric regression
Y =m(X)+e, E[e|X] =0,

where m is a monotone on [0, 1].

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs”



Isotonic regression

© Nonparametric regression
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where m is a monotone on [0, 1].

@ Isotonic regression estimator: nonparametric least-squares over the set
of non-decreasing functions
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Isotonic regression

© Nonparametric regression
Y = m(X) +¢, E[e|X] =0,

where m is a monotone on [0, 1].

@ Isotonic regression estimator: nonparametric least-squares over the set
of non-decreasing functions

© Can be computed, e.g., using the pool adjacent violators algorithm:
scales up similarly to the OLS estimator.
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Isotonic regression: graphical representation

(W.T. Reid , 1955): the estimator m(x) is the left derivative of the greatest
convex minorant of the cumulative sum diagram

t — (Fa(t), Mn(t)), t €[0,1]

at t = x with
1 ¢ BN
() ==S5S"1{x < d My(t) ==Y ViI{Xx < t}.
Falt) ”EH: {X; <t} an (1) ni§:1: X<t}
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Isotonic regression: graphical representation

Figure: m(x) is the left derivative of the greatest convex minorant (broken blue
line) of the cumulative sum diagram t — (Fp(t), M,(t)) (red dots) with t € [0, 1].
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Isotonic regression at the boundary: closed-form expression

Estimator of the boundary point m(0) = lim, o m(x) is the slope of the first
segment of the cumulative sum diagram

1<1<n I

m(X(1)) = min —ZY

where X(1) < X(2) < -+ < X() Is the order statistics and
(Y1): Y2),---» Y(n)) is the induced order statistics.
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Isotonic regression at the boundary: inconsistency

Theorem

Suppose that x — Pr(Y < y|X = x) is continuous for every y and that
F.ix=o(—¢€) > 0 for some ¢ > 0. Then

“nnliglf Pr(|m(X(1)) — m(0)| > ¢€) > 0.
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Isotonic regression at the boundary: inconsistency

Proof.
For any e > 0

N L 1¢
Pr(|m(X(1)) — m(0)| > €) > Pr ,min_ < Z Yijy <m(0) —e¢
Sisn i
> Pr(Y() < m(0) —¢)
= /Pr(Y < m(0) — €| X = x)dFx,,(x)
— Pr(Y < m(0) —¢/X =0)

= s|x:o(—€)7

where we use the fact that X(y) 9 0. Ol

V.
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Non-standard asymptotics

Theorem

Boundary corrected estimators m(cn—?) with ¢ > 0 and a € (0,1)
(i) Forae (0,1/3)

1/3

4 / 2
4m'(0)o™(0) argmax,cg{ Ws — t2}.

f(0)

Wl

n3 (i (en™?) — m(0)) 4 ‘

(i) Forae[1/3,1)

=

1-5 o2 2
nz (M (cn™?) — m(0)) 4 D[%po) < W(O();Wt + %m,(o)ﬂa:1/3> (

where (W;)teRr is the two-sided Brownian motion, 02(x) = Var(Y|X = x),
f(x) is the density of X, and D4(g)(x) is the left derivative of the greatest
convex minorant of g : A— R at a point x ¢ ACR.

4
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-
Ingredients of the proof

@ Switching relation (Groeneboom, 1985): for every x € (0,1) and a € R

m(x) < a <= argmaxscp ) {aFn(s) — Ma(s)} > x.
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Ingredients of the proof

@ Switching relation (Groeneboom, 1985): for every x € (0,1) and a € R
m(x) < a <= argmaxscp ) {aFn(s) — Ma(s)} > x.

@ Argmax continuous mapping theorem of (Kim and Pollard, 1990): if

Zn LNy uniformly on compact sets and

(i) (Z(t))ter is a continuous stochastic process with a unique maximizer;
(i) Iim|t|_,oo Z(t) = —00;
(iii) Tightness: argmax,cgZy(t) = Op(1).

Then argmax,cgZ,(t) 4 argmax,cpZ(t)
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Ingredients of the proof

@ Switching relation (Groeneboom, 1985): for every x € (0,1) and a € R
M(x) < a <= argmax,cgq]{aFn(s) — Ma(s)} > x.

@ Argmax continuous mapping theorem of (Kim and Pollard, 1990): if
d .
Z, = Z uniformly on compact sets and

(i) (Z(t))ter is a continuous stochastic process with a unique maximizer;
(i) limjy o0 Z(t) = —00;
(iii) Tightness: argmax,cgZy(t) = Op(1).
Then argmax,cgZ,(t) 4 argmax,cpZ(t)
@ OId and new tightness results for the boundary point: (Kim and

Pollard, 1990) and (van der Vaart and Wellner, 2000) results do not
always apply.
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-
Ingredients of the proof

@ Switching relation (Groeneboom, 1985): for every x € (0,1) and a € R
M(x) < a <= argmax,cgq]{aFn(s) — Ma(s)} > x.

@ Argmax continuous mapping theorem of (Kim and Pollard, 1990): if
Z, LNy uniformly on compact sets and
(i) (Z(t))ter is a continuous stochastic process with a unique maximizer;
(i) limjy o0 Z(t) = —00;
(iii) Tightness: argmax,cgZy(t) = Op(1).
Then argmax,cgZ,(t) 4 argmax,cpZ(t)
@ OId and new tightness results for the boundary point: (Kim and
Pollard, 1990) and (van der Vaart and Wellner, 2000) results do not
always apply.

@ Do not rely on the strong approximation, cf., (Kulikov and Lopuhag,
2006).
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Comments

@ "Slow” corrections: cn—? with a € (0,1/3) lead to the asymptotic
distribution similar to the one at the interior point, cf., (Wright, 1981).
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@ "Slow” corrections have large finite-sample bias converging at a slower
than cube-root rate = not recommended to use in practice.
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@ "Slow" corrections: cn~? with a € (0,1/3) lead to the asymptotic
distribution similar to the one at the interior point, cf., (Wright, 1981).

@ "Slow" corrections have large finite-sample bias converging at a slower
than cube-root rate = not recommended to use in practice.

© "Fast” corrections: cn~? with a € [1/3,1) generate one-sided
counterpart to the distribution at the interior point.

© The fastest cube-root convergence rate is achieved when a =1/3

nt/3 (I‘T‘l(cn_l/3) - m(O)) < D[%m) ( (22(0)Wt + tzcm,(0)> (1).
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Comments

@ "Slow" corrections: cn~? with a € (0,1/3) lead to the asymptotic
distribution similar to the one at the interior point, cf., (Wright, 1981).

@ "Slow" corrections have large finite-sample bias converging at a slower
than cube-root rate = not recommended to use in practice.

© "Fast” corrections: cn~? with a € [1/3,1) generate one-sided
counterpart to the distribution at the interior point.

© The fastest cube-root convergence rate is achieved when a =1/3
2(0 t’c
nt/3 (r’h(cn_l/3) - m(O)) % Dh o) ( Oy, 4 m'(0)> (1).

© Minimax optimal convergence rate under the assumption m’ exists.
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Comments

@ "Slow" corrections: cn~? with a € (0,1/3) lead to the asymptotic
distribution similar to the one at the interior point, cf., (Wright, 1981).

@ "Slow" corrections have large finite-sample bias converging at a slower
than cube-root rate = not recommended to use in practice.

© "Fast” corrections: cn~? with a € [1/3,1) generate one-sided
counterpart to the distribution at the interior point.

© The fastest cube-root convergence rate is achieved when a =1/3

nt/3 (n“v(cn_l/3) - m(O)) < D(5.00) ( @Wt + t2(:m,(0)> (1).

© Minimax optimal convergence rate under the assumption m’ exists.
@ The distribution is not pivotal.
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What about the constant c?

@ Interior point x € (0,1)

o2 2
n1/3 (,’f;(x) — m(X)) i} D(L—oo,oo) ( %Wt + 7%m’(O)) (1)
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N
What about the constant c?

@ Interior point x € (0,1)
2 2
'3 (m(x) — m(x)) & Dt 00) < U—(th + t—m’(O)) (1).
@ Boundary point x =0

g 2C
/3 ((en %) = m(x)) < Db o, ( %Wt + %m’(@) (1).
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N
What about the constant c?

@ Interior point x € (0,1)

02 2
n'/3 (i(x) — m(x)) & DE o) ( Oy, . t—m'(O)) (1).

@ Boundary point x =0
2
13 (a0 o —1/3\ d AL a%(0) t°c ,
n (m(cn ) m(x)) —>D[0m)< oWt O] ).

© We get ¢ = 1 automatically for the tuning-free isotonic regression at
the interior point.
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N
What about the constant c?

@ Interior point x € (0,1)
o2 2
n*/3 (A(x) — m(x)) 4, D(L_oo,oo) ( ﬂWt + tm’(O)) (1).

© Boundary point x =0

a2(0) t?c

n*/3 (fﬁ(cnfl/:{) - m(X)> = D[LO,OO) < th + 2m’(0)> (1)

© We get ¢ = 1 automatically for the tuning-free isotonic regression at
the interior point.
© (not recommended) Alternative is to estimate the constant:

e Increasing the variance with a hope to reduce the bias and the
asymptotic MSE: the finite-sample MSE increases in our MC
experiments, see also (Kulikov and Lopuha, 2006) for the Grenander
estimator;

e Inference after the model selection problem?

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 21/ 36



Non-standard inferences: the bootstrap?

o 2
3 (i(n13%) = m(0)) % Db ., ( %Wt + %m/(O)) (1)

@ The distribution is not pivotal: estimating o2, f, m" and discretizing
the time?
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o 2
3 (i(n13%) = m(0)) % Db ., ( %Wt + %m/(O)) (1)

@ The distribution is not pivotal: estimating o2, f, m" and discretizing
the time?

@ The bootstrap fails for cube-root consistent estimators as they are not
smooth functions of the data: Isotonic regression, Manski's maximum
score, Grenander estimator, current status model...
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o 2
3 (i(n13%) = m(0)) % Db ., ( %Wt + %m/(O)) (1)

@ The distribution is not pivotal: estimating o2, f, m" and discretizing
the time?

@ The bootstrap fails for cube-root consistent estimators as they are not
smooth functions of the data: Isotonic regression, Manski's maximum
score, Grenander estimator, current status model...

© The bootstrap does not estimate consistently m’ for the isotonic
regression.
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Non-standard inferences: the bootstrap?

0-2 2
3 (i(n13%) = m(0)) % Db ., ( f((oo))vvt + t2m/(0)) (1)

@ The distribution is not pivotal: estimating o2, f, m" and discretizing
the time?

@ The bootstrap fails for cube-root consistent estimators as they are not
smooth functions of the data: Isotonic regression, Manski's maximum
score, Grenander estimator, current status model...

© The bootstrap does not estimate consistently m’ for the isotonic
regression.

@ Available solutions: subsampling, smoothed bootstrap, reshaping the
objective function (Cattaneo, Jansson, and Nagasawa, 2019).
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New solution

Q Using m(n~1/2) instead of M(n~1/3) and killing the drift term with m’.

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs”



New solution

Q Using m(n~1/2) instead of M(n~1/3) and killing the drift term with m’.

@ n /2 balances the convergence rate of the estimator and the rate at
which the drift vanishes.
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Trimmed wild bootstrap

© Simulate wild bootstrap samples

YF=m(X) + g, i=1,...m

1

@ (n?)f_, arei.id., independent from the data;
© Trimmed isotonic regression estimator

L) m(x), x € (n121)
A0V = (0 112), x e [0, 1)

and (£&;)7_; are corresponding residuals.

@ Under some regularity conditions, the trimmed wild bootstrap is
consistent in probability.
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Isotonic regression discontinuity design estimators

Sharp iRDD estimator
0= (n?) —m_(n"?),
where we run two isotonic regressions

m_(.) = argmin Z(Y,-—m(X,-))2, My (.) = argmin Z(Y,-—m(X,-))z.

meM[~1,0) /o] meM01] 7

and

@ a=1/3 for point estimation;

@ a = 1/2 for inferences;
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Asymptotic distribution

Theorem

Under some regularity conditions

B0 -0) ey —¢,

where

0.2 t2
€+ = D[%),oo) =+ Wt+ +

f. 27m | (@)
o2t
f_ = D(L—OO,O] f__Wt + Eml_ (_]-)

and W;" and W, are two independent standard Brownian motions
originating from zero and running in opposite directions.
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Bootstrap consistency

Theorem

Under some regularity conditions

’Pr* (n1/4(§* —0) < u) — Pr <n1/4(9A —-0) < u)‘ Ao,

where Pr(.) = Pr(.|(Xi, Yi)%2,).
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MC experiments: design

@ DGP:
Y = m(X) + 01 1)(X) + o(X)e,
where € ~ N(0,1) and ¢ 1L X.
@ Two specifications: m(x) = x> 4 0.25x (DGP3) or m(x) = exp(0.25x)
(DGP2).
© Homoskedasticity (o(x) = 1) and heteroskedasticity (o(x) = v/x + 1).

QO X ~ 2 x Beta(a, 8) — 1 with low density near the cut-off (« = 5 = 0.5,
DGP2) and high density near the cut-off (« = 5 = 2, DGP1,3).

@ Causal effect 8 = 1.

@ 5,000 replications.

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 28 / 36



MC experiments: single run
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Figure: Single MC experiment, n = 500.
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MC experiments: finite sample distribution
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MC experiments: finite sample distribution

Homoskedasticity

Heteroskedasticity

n Bias Var MSE Bias Var MSE
DGP 1
100 0.020 0.077 0.077 0.027 0.077 0.078
500 -0.008 0.022 0.022 -0.006 0.022 0.022
1000 -0.006 0.013 0.013 -0.005 0.013 0.013
DGP 2
100 -0.153 0.137 0.160 -0.138 0.141 0.160
500 -0.081 0.044 0.050 -0.077 0.045 0.050
1000 -0.063 0.027 0.031 -0.060 0.027 0.031
DGP 3
100 0.093 0.089 0.097 0.098 0.090 0.099
500 0.017 0.024 0.024 0.018 0.024 0.024
1000 0.006 0.015 0.015 0.007 0.015 0.015
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MC experiments: exact distribution vs the bootstrap

-4 2 o 2 a 4 3 2 1 o

(a) Exact distribution (b) Naive bootstrap  (c) Trimmed bootstrap
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-
Incumbency advantage (Lee, 2008)

@ Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 33 /36



-
Incumbency advantage (Lee, 2008)

@ Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

@ (Lee, 2008): 7.7% incumbency advantage for the U.S. Congressional
elections.

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 33 /36



-
Incumbency advantage (Lee, 2008)

@ Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

@ (Lee, 2008): 7.7% incumbency advantage for the U.S. Congressional
elections.

© Monotonicity is plausible: candidates with a larger margin have on
average larger vote share on the next election.

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 33 /36



-
Incumbency advantage (Lee, 2008)

@ Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

@ (Lee, 2008): 7.7% incumbency advantage for the U.S. Congressional
elections.

© Monotonicity is plausible: candidates with a larger margin have on
average larger vote share on the next election.

@ iRDD gives point estimates 13.8% with 95% confidence interval
[6.6%, 26.5%).

Babii and Kumar (shortinst) " Isotonic regression discontinuity designs” November 14, 2019 33 /36



-
Incumbency advantage (Lee, 2008)

@ Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

@ (Lee, 2008): 7.7% incumbency advantage for the U.S. Congressional
elections.

© Monotonicity is plausible: candidates with a larger margin have on
average larger vote share on the next election.

@ iRDD gives point estimates 13.8% with 95% confidence interval
[6.6%,26.5%)].

@ Without boundary corrections (iRDD is inconsistent) the point
estimate is 6.6%.
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Incumbency advantages
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Figure: Incumbency advantage. Sample size: 6,559 observations with 3,819

observations below the cut-off.

Babii and Kumar (shortinst)

Vote Share, Election t-1

0.7

0.65

0.6

0.55

0.5

" Isotonic regression discontinuity designs”

O D
Estimator

-0.: -0.1 .1 0.2
Democratic Vote Share Margin of Victory, Election t

November 14, 2019

34 /36



Conclusions

© New approach to nonparametric monotone RD designs;

@ Theory for the isotonic regression estimator at the boundary of its
support based on new tightness results;

© New wild bootstrap method that works without additional
nonparametric smoothing (or subsampling);

@ Inference with valid standard errors.
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Thank you!

email: babii.andrii@gmail.com
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