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Preview

Motivation

Regression discontinuity designs and shape restrictions.

Approach

1 New isotonic sharp and fuzzy RDD estimators (iRDD) based on the
boundary corrected isotonic regression;

2 Do not estimate tuning parameters.

Results

1 Isotonic regression is inconsistent at the boundary of its support;

2 Non-standard asymptotic approximation for boundary corrected iRDD
estimators based on new tightness results;

3 New solution to the bootstrap inconsistency that does not rely on the
nonparametric smoothing.
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Nonparametric shape restrictions

(Chetverikov, Santos, Shaikh, 2018)

1 Sharper identification: getting point identification and improving
partial identification;

2 Testable implications based on shape restrictions;

3 Improving finite sample estimation and inference using more
information about the DGP;

4 Shape restrictions are arguably more economically meaningful than
smoothness restrictions: one derivative vs two derivatives.
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Monotone RDDs

Figure: Examples of monotone designs
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Sharp designs

1 Potential outcomes framework (Hahn, Todd, and Van der Klaauw,
2001)

Y = DY1 + (1− D)Y0,

where

D = 1{X ≥ c} is the treatment indicator;
X ∈ R is the running variable and c is the cut-off;
Y1,Y0 ∈ R are potential outcomes for treated and untreated.

2 Causal effect
θ = E[Y1 − Y0|X = c].

3 (Y ,D,X ) are observed while (Y1,Y0) are not: fundamental problem of
causal inference.
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Identification: assumptions

(OC) One sided continuity: x 7→ E[Y1|X = x ] is right-continuous and
x 7→ E[Y0|X = x ] is left-continuous at the cut-off.

(M1) Monotonicity 1: x 7→ E[Y1|X = x ] and x 7→ E[Y0|X = x ] are
monotone in some neighborhood of the cut-off.

(M2) Monotonicity 2: E[Y1|X = c] ≥ E[Y0|X = c] in the non-decreasing
case or E[Y1|X = c] ≤ E[Y0|X = c] in the non-increasing case
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Identification

Theorem

Suppose that (OC) and (M1) assumptions are satisfied. Then

lim
x↓c
E[Y |X = x ]− lim

x↑c
E[Y |X = x ] (1)

exists and equals to θ. Moreover, under (M1) and (M2) if θ equals to the
expression in Eq. 1, then the (OC) conditions holds.
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Illustration

•

•
◦

◦

x

(a) Identification under (OC)

•

•

◦

◦

x

(b) Counterexample when (OC) fails

Figure: Identification in the sharp RDD. The thick line represents
E[Y0|X = x ], x < 0 and E[Y1|X = x ], x ≥ 0 while the dashed line represents
E[Y1|X = x ], x < 0 and E[Y0|X = x ], x ≥ 0. The thick line coincides with
x 7→ E[Y |X = x ].
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Comments

1 Relax continuity to the one-sided continuity for sharp designs (is this
well-known?).

2 Under two monotonicity conditions, the one-sided continuity is the
weakest possible identifying assumption.

3 Manipulation in the running variable seems to be related to failure of
the one-sided continuity of x 7→ E[Y0|X = x ] (testable implications?).
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Estimation

Causal effect
θ = lim

x↓c
E[Y |X = x ]− lim

x↑c
E[Y |X = x ].

1 Empirical practice: estimate conditional mean functions before and
after the cut-off using nonparametric local polynomial estimators and
compute the difference.

2 Asymptotic properties are well-known, see (Fan and Gijbels, 1992).

3 Need to select the kernel function and the bandwidth parameter. The
bandwidth is typically estimated from the data and the theory is
developed for the deterministic bandwidth.
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Contributions of this paper

1 New approach to monotone sharp and fuzzy RDD based on the
isotonic regression.

2 Aim to avoid estimating tuning parameters.

3 First treatment of the isotonic regression at the boundary of its
support based on a new tightness result, cf. (Kulikov and Lopuhaä,
2006) and the KMT approximation for the Grenander estimator.

4 New bootstrap methodology for a non-standard inference problem.
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2006) and the KMT approximation for the Grenander estimator.

4 New bootstrap methodology for a non-standard inference problem.

Babii and Kumar (shortinst) ”Isotonic regression discontinuity designs” November 14, 2019 11 / 36



Isotonic regression

1 Nonparametric regression

Y = m(X ) + ε, E[ε|X ] = 0,

where m is a monotone on [0, 1].

2 Isotonic regression estimator: nonparametric least-squares over the set
of non-decreasing functions

m̂(.) = arg min
m∈M[0,1]

n∑
i=1

(Yi −m(Xi ))2.

3 Can be computed, e.g., using the pool adjacent violators algorithm:
scales up similarly to the OLS estimator.
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Isotonic regression: graphical representation

(W.T. Reid , 1955): the estimator m̂(x) is the left derivative of the greatest
convex minorant of the cumulative sum diagram

t 7→ (Fn(t),Mn(t)), t ∈ [0, 1]

at t = x with

Fn(t) =
1

n

n∑
i=1

1{Xi ≤ t} and Mn(t) =
1

n

n∑
i=1

Yi1{Xi ≤ t}.
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Isotonic regression: graphical representation

•

•

•

•

•

•

•

•

•

•

•

11
n0

Figure: m̂(x) is the left derivative of the greatest convex minorant (broken blue
line) of the cumulative sum diagram t 7→ (Fn(t),Mn(t)) (red dots) with t ∈ [0, 1].
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Isotonic regression at the boundary: closed-form expression

Estimator of the boundary point m(0) = limx↓0m(x) is the slope of the first
segment of the cumulative sum diagram

m̂(X(1)) = min
1≤i≤n

1

i

i∑
j=1

Y(j),

where X(1) < X(2) < · · · < X(n) is the order statistics and
(Y(1),Y(2), . . . ,Y(n)) is the induced order statistics.
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Isotonic regression at the boundary: inconsistency

Theorem

Suppose that x 7→ Pr(Y ≤ y |X = x) is continuous for every y and that
Fε|X=0(−ε) > 0 for some ε > 0. Then

lim inf
n→∞

Pr(|m̂(X(1))−m(0)| > ε) > 0.
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Isotonic regression at the boundary: inconsistency

Proof.

For any ε > 0

Pr(|m̂(X(1))−m(0)| > ε) ≥ Pr

 min
1≤i≤n

1

i

i∑
j=1

Y(j) < m(0)− ε


≥ Pr(Y(1) < m(0)− ε)

=

∫
Pr(Y ≤ m(0)− ε|X = x)dFX(1)

(x)

→ Pr(Y ≤ m(0)− ε|X = 0)

= Fε|X=0(−ε),

where we use the fact that X(1)
d−→ 0.
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Non-standard asymptotics

Theorem

Boundary corrected estimators m̂(cn−a) with c > 0 and a ∈ (0, 1)

(i) For a ∈ (0, 1/3)

n
1
3
(
m̂
(
cn−a

)
−m(0)

) d−→
∣∣∣∣4m′(0)σ2(0)

f (0)

∣∣∣∣1/3 argmaxt∈R{Wt − t2}.

(ii) For a ∈ [1/3, 1)

n
1−a
2
(
m̂
(
cn−a

)
−m(0)

) d−→ DL
[0,∞)

(√
σ2(0)

cf (0)
Wt +

t2c

2
m′(0)1a=1/3

)
(1),

where (Wt)t∈R is the two-sided Brownian motion, σ2(x) = Var(Y |X = x),
f (x) is the density of X , and DL

A(g)(x) is the left derivative of the greatest
convex minorant of g : A→ R at a point x ∈ A ⊂ R.
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Ingredients of the proof

1 Switching relation (Groeneboom, 1985): for every x ∈ (0, 1) and a ∈ R

m̂(x) ≤ a ⇐⇒ argmaxs∈[0,1] {aFn(s)−Mn(s)} ≥ x .

2 Argmax continuous mapping theorem of (Kim and Pollard, 1990): if

Zn
d−→ Z uniformly on compact sets and

(i) (Z (t))t∈R is a continuous stochastic process with a unique maximizer;
(ii) lim|t|→∞ Z (t) = −∞;
(iii) Tightness: argmaxt∈RZn(t) = OP(1).

Then argmaxt∈RZn(t)
d−→ argmaxt∈RZ (t)

3 Old and new tightness results for the boundary point: (Kim and
Pollard, 1990) and (van der Vaart and Wellner, 2000) results do not
always apply.

4 Do not rely on the strong approximation, cf., (Kulikov and Lopuhaä,
2006).
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Comments

1 ”Slow” corrections: cn−a with a ∈ (0, 1/3) lead to the asymptotic
distribution similar to the one at the interior point, cf., (Wright, 1981).

2 ”Slow” corrections have large finite-sample bias converging at a slower
than cube-root rate =⇒ not recommended to use in practice.

3 ”Fast” corrections: cn−a with a ∈ [1/3, 1) generate one-sided
counterpart to the distribution at the interior point.

4 The fastest cube-root convergence rate is achieved when a = 1/3

n1/3
(
m̂(cn−1/3)−m(0)

)
d−→ DL

[0,∞)

(√
σ2(0)

cf (0)
Wt +

t2c

2
m′(0)

)
(1).

5 Minimax optimal convergence rate under the assumption m′ exists.

6 The distribution is not pivotal.
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What about the constant c?

1 Interior point x ∈ (0, 1)

n1/3 (m̂(x)−m(x))
d−→ DL

(−∞,∞)

(√
σ2(0)

f (0)
Wt +

t2

2
m′(0)

)
(1).

2 Boundary point x = 0

n1/3
(
m̂(cn−1/3)−m(x)

)
d−→ DL

[0,∞)

(√
σ2(0)

cf (0)
Wt +

t2c

2
m′(0)

)
(1).

3 We get c = 1 automatically for the tuning-free isotonic regression at
the interior point.

4 (not recommended) Alternative is to estimate the constant:
Increasing the variance with a hope to reduce the bias and the
asymptotic MSE: the finite-sample MSE increases in our MC
experiments, see also (Kulikov and Lopuhaä, 2006) for the Grenander
estimator;
Inference after the model selection problem?
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Non-standard inferences: the bootstrap?

n1/3
(
m̂(n−1/3)−m(0)

)
d−→ DL

[0,∞)

(√
σ2(0)

f (0)
Wt +

t2

2
m′(0)

)
(1)

1 The distribution is not pivotal: estimating σ2, f ,m′ and discretizing
the time?

2 The bootstrap fails for cube-root consistent estimators as they are not
smooth functions of the data: Isotonic regression, Manski’s maximum
score, Grenander estimator, current status model...

3 The bootstrap does not estimate consistently m′ for the isotonic
regression.

4 Available solutions: subsampling, smoothed bootstrap, reshaping the
objective function (Cattaneo, Jansson, and Nagasawa, 2019).
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New solution

1 Using m̂(n−1/2) instead of m̂(n−1/3) and killing the drift term with m′.

2 n−1/2 balances the convergence rate of the estimator and the rate at
which the drift vanishes.
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Trimmed wild bootstrap

1 Simulate wild bootstrap samples

Y ∗i = m̃(Xi ) + η∗i ε̃i , i = 1, . . . , n;

2 (η∗i )ni=1 are i.i.d., independent from the data;

3 Trimmed isotonic regression estimator

m̃(x) =

{
m̂(x), x ∈ (n−1/2, 1)

m̂(n−1/2), x ∈ [0, n−1/2]

and (ε̃i )
n
i=1 are corresponding residuals.

4 Under some regularity conditions, the trimmed wild bootstrap is
consistent in probability.
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Isotonic regression discontinuity design estimators

Sharp iRDD estimator

θ̂ = m̂+(n−a)− m̂−(n−a),

where we run two isotonic regressions

m̂−(.) = arg min
m∈M[−1,0)

∑
i∈I−

(Yi−m(Xi ))2, m̂+(.) = arg min
m∈M[0,1]

∑
i∈I+

(Yi−m(Xi ))2.

and

a = 1/3 for point estimation;

a = 1/2 for inferences;
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Asymptotic distribution

Theorem

Under some regularity conditions

n1/3(θ̂ − θ)
d−→ ξ+ − ξ−,

where

ξ+ = DL
[0,∞)

√σ2+
f+

W+
t +

t2

2
m′+

 (1)

ξ− = DL
(−∞,0]

√σ2−
f−

W−
t +

t2

2
m′−

 (−1).

and W+
t and W−

t are two independent standard Brownian motions
originating from zero and running in opposite directions.
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Bootstrap consistency

Theorem

Under some regularity conditions∣∣∣Pr∗ (n1/4(θ̂∗ − θ̂) ≤ u
)
− Pr

(
n1/4(θ̂ − θ) ≤ u

)∣∣∣ P−→ 0,

where Pr∗(.) = Pr(.|(Xi ,Yi )
∞
i=1).
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MC experiments: design

1 DGP:
Y = m(X ) + θ1[0,1](X ) + σ(X )ε,

where ε ∼ N(0, 1) and ε ⊥⊥ X .

2 Two specifications: m(x) = x3 + 0.25x (DGP3) or m(x) = exp(0.25x)
(DGP2).

3 Homoskedasticity (σ(x) = 1) and heteroskedasticity (σ(x) =
√
x + 1).

4 X ∼ 2×Beta(α, β)− 1 with low density near the cut-off (α = β = 0.5,
DGP2) and high density near the cut-off (α = β = 2, DGP1,3).

5 Causal effect θ = 1.

6 5,000 replications.
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MC experiments: single run
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Figure: Single MC experiment, n = 500.
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MC experiments: finite sample distribution
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Figure: Homoskedasticity in (a)-(c) and heteroskedasticity in (d)-(f).
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MC experiments: finite sample distribution

Homoskedasticity Heteroskedasticity
n Bias Var MSE Bias Var MSE

DGP 1
100 0.020 0.077 0.077 0.027 0.077 0.078
500 -0.008 0.022 0.022 -0.006 0.022 0.022

1000 -0.006 0.013 0.013 -0.005 0.013 0.013

DGP 2
100 -0.153 0.137 0.160 -0.138 0.141 0.160
500 -0.081 0.044 0.050 -0.077 0.045 0.050

1000 -0.063 0.027 0.031 -0.060 0.027 0.031

DGP 3
100 0.093 0.089 0.097 0.098 0.090 0.099
500 0.017 0.024 0.024 0.018 0.024 0.024

1000 0.006 0.015 0.015 0.007 0.015 0.015
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MC experiments: exact distribution vs the bootstrap
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Figure: Sample size: n = 100 in panels (a)-(c) and n = 1, 000 in panels (d)-(f).
5,000 MC experiments.
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Incumbency advantage (Lee, 2008)

1 Causal effect of incumbency on electoral outcomes: incumbents by
definition are more successful politicians.

2 (Lee, 2008): 7.7% incumbency advantage for the U.S. Congressional
elections.

3 Monotonicity is plausible: candidates with a larger margin have on
average larger vote share on the next election.

4 iRDD gives point estimates 13.8% with 95% confidence interval
[6.6%, 26.5%].

5 Without boundary corrections (iRDD is inconsistent) the point
estimate is 6.6%.
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Incumbency advantages
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Figure: Incumbency advantage. Sample size: 6,559 observations with 3,819
observations below the cut-off.
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Conclusions

1 New approach to nonparametric monotone RD designs;

2 Theory for the isotonic regression estimator at the boundary of its
support based on new tightness results;

3 New wild bootstrap method that works without additional
nonparametric smoothing (or subsampling);

4 Inference with valid standard errors.
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Thank you!
email: babii.andrii@gmail.com
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